Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity
Zhen Wang; Wei Sun; Zhouchao Wei; Shanwen Zhang
Kybernetika (2017)
- Volume: 53, Issue: 2, page 354-369
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topWang, Zhen, et al. "Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity." Kybernetika 53.2 (2017): 354-369. <http://eudml.org/doc/288189>.
@article{Wang2017,
abstract = {Periodic parametric perturbation control and dynamics at infinity for a 3D autonomous quadratic chaotic system are studied in this paper. Using the Melnikov's method, the existence of homoclinic orbits, oscillating periodic orbits and rotating periodic orbits are discussed after transferring the 3D autonomous chaotic system to a slowly varying oscillator. Moreover, the parameter bifurcation conditions of these orbits are obtained. In order to study the global structure, the dynamics at infinity of this system are analyzed through Poincaré compactification. The simulation results demonstrate feasibility of periodic parametric perturbation control technology and correctness of the theoretical results.},
author = {Wang, Zhen, Sun, Wei, Wei, Zhouchao, Zhang, Shanwen},
journal = {Kybernetika},
keywords = {Hamiltonian system; Melnikov's methods; homoclinic orbits; periodic orbits; periodic parametric perturbation; dynamics at infinity},
language = {eng},
number = {2},
pages = {354-369},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity},
url = {http://eudml.org/doc/288189},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Wang, Zhen
AU - Sun, Wei
AU - Wei, Zhouchao
AU - Zhang, Shanwen
TI - Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 2
SP - 354
EP - 369
AB - Periodic parametric perturbation control and dynamics at infinity for a 3D autonomous quadratic chaotic system are studied in this paper. Using the Melnikov's method, the existence of homoclinic orbits, oscillating periodic orbits and rotating periodic orbits are discussed after transferring the 3D autonomous chaotic system to a slowly varying oscillator. Moreover, the parameter bifurcation conditions of these orbits are obtained. In order to study the global structure, the dynamics at infinity of this system are analyzed through Poincaré compactification. The simulation results demonstrate feasibility of periodic parametric perturbation control technology and correctness of the theoretical results.
LA - eng
KW - Hamiltonian system; Melnikov's methods; homoclinic orbits; periodic orbits; periodic parametric perturbation; dynamics at infinity
UR - http://eudml.org/doc/288189
ER -
References
top- Chen, Y., Cao, L., Sun, M., Robust midified function projective synchronization in network with unknown parameters and mismatch parameters., Int. J. Nonlinear Sci. 10 (2010), 17-23. MR2721064
- Čelikovský, S., Vaněček, A., Bilinear systems and chaos., Kybernetika 30 (1994), 403-424. Zbl0823.93026MR1303292
- Dumortier, F., Llibre, J., Artes, J. C., Qualitative Theory of Planar Differential Systems., Springer, Berlin 2006. Zbl1110.34002MR2256001
- Fang, Y. Y., Xu, Z. Y., Cai, C. H., Melnikov analysis of feedback control of chaotic dynamics system., J. Wuxi University of Light Industry 20 (2001), 624-629.
- Guckenheimer, J., Holmes, P., 10.1007/978-1-4612-1140-2, Springer, Berlin 2002. Zbl0515.34001MR0709768DOI10.1007/978-1-4612-1140-2
- Jafari, S., Sprott, J. C., 10.1016/j.chaos.2013.08.018, Chaos, Solitons and Fractals 57 (2013), 79-84. Zbl1355.37056MR3128600DOI10.1016/j.chaos.2013.08.018
- Kuznetsov, A. P., Kuznetsov, S. P., Stankevich, N. V., 10.1016/j.cnsns.2009.06.027, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 1676-1681. DOI10.1016/j.cnsns.2009.06.027
- Li, J. B., Zhao, X. H., Liu, Z. R., Theory of Generalized Hamiltonian System and its Applications., Science Press, Beijing 2007.
- Li, Y., Wu, X. Q., Lu, J. A., Lü, J. H., 10.1109/tcsii.2015.2468924, IEEE Trans. Circuits and Systems II 63 (2016), 206-210. DOI10.1109/tcsii.2015.2468924
- Liu, K. X., Wu, L. L., Lü, J. H., Zhu, H. H., 10.1007/s11431-015-5989-7, Science China-Technological Sciences 59 (2016), 22-32. DOI10.1007/s11431-015-5989-7
- Liu, Y. J., 10.1007/s11071-012-0610-0, Nonlinear Dyn. 70 (2012), 2203-2212. Zbl1268.34092MR2992208DOI10.1007/s11071-012-0610-0
- Liu, Z. R., Perturbation Criteria for Chaos., Shanghai Scientific and Technological Education Publishing House, Shanghai 1994.
- Lorenz, E. N., 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2, J. Atmospheric Sci. 20 (1963), 130-141. DOI10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
- Lü, J. H., Chen, G. R., 10.1142/s0218127402004620, Int. J. Bifurcation and Chaos 12 (2002), 659-661. Zbl1063.34510MR1894886DOI10.1142/s0218127402004620
- Mirus, K. A., Sprott, J. C., 10.1016/s0375-9601(99)00068-7, Phys. Lett. A 254 (1999), 275-278. DOI10.1016/s0375-9601(99)00068-7
- Mirus, K. A., Sprott, J. C., 10.1103/physreve.59.5313, Phys. Rev. E 59 (1999), 5313-5324. DOI10.1103/physreve.59.5313
- Shen, C. W., Yu, S. M., Chen, G. R., 10.1002/cta.2062, Int. J. Circuit Theory Appl. 43 (2015), 2039-2056. DOI10.1002/cta.2062
- Sprott, J. C., 10.1103/physreve.50.r647, Phys. Rev. E 50 (1994), 647-650. MR1381868DOI10.1103/physreve.50.r647
- Tan, S. L., Lü, J. H., Hill, D. J., 10.1109/tac.2014.2329235, IEEE Trans. Automat. Control 60 (2015), 576-581. MR3310190DOI10.1109/tac.2014.2329235
- Tigan, G., Analysis of a dynamical system derived from the Lorenz system., Scientific Bull. Politehnica University of Timisoara 50 (2005), 61-72. Zbl1107.37039MR2278163
- Wang, Q. X., Yu, S. M., Li, C. Q., Lü, J. H., Fang, X. L., Bahi, J. M., 10.1109/tcsi.2016.2515398, IEEE Trans. Circuits and Systems I 63 (2016), 401-412. MR3488842DOI10.1109/tcsi.2016.2515398
- Wang, X., Chen, G. R., 10.1007/s11071-012-0669-7, Nonlinear Dynamics 71 (2013), 429-436. MR3015249DOI10.1007/s11071-012-0669-7
- Wang, Z., 10.1007/s11071-009-9601-1, Nonlinear Dynmics 60 (2010), 369-373. Zbl1189.70103MR2645029DOI10.1007/s11071-009-9601-1
- Wang, Z., Passivity control of nonlinear electromechanical transducer chaotic system., Control Theory Appl. 28 (2011), 1036-1040.
- Wang, Z., Li, Y. X., Xi, X. J., Lü, L., Heteoclinic orbit and backstepping control of a 3D chaotic system., Acta Phys. Sin. 60 (2011), 010513.
- Wang, Z., Sun, W., Wei, Z. C., Xi, X. J., 10.14736/kyb-2014-4-0616, Kybernetika 50 (2014), 616-631. Zbl1310.34063MR3275088DOI10.14736/kyb-2014-4-0616
- Wang, Z., Wei, Z. C., Xi, X. J., Li, Y. X., 10.1007/s11071-014-1395-0, Nonlinear Dynamics 77 (2014), 1503-1518. Zbl1331.34044MR3247491DOI10.1007/s11071-014-1395-0
- Wei, Z. C., Yang, Q. G., 10.1016/j.camwa.2009.07.058, Comput. Math. Appl. 58 (2009), 1979-1987. Zbl1189.34118MR2557520DOI10.1016/j.camwa.2009.07.058
- Wei, Z. C., Zhang, W., Wang, Z., Yao, M. H., 10.1142/s0218127415500285, Int. J. Bifurcation and Chaos 22 (2015), 1550028. Zbl1309.34009MR3316322DOI10.1142/s0218127415500285
- Wu, Z. M., Xie, J. Y., Fang, Y. Y., Xu, Z. Y., 10.1016/j.chaos.2005.10.060, Chaos Solitons and Fractals 32 (2007), 104-112. Zbl1138.37314MR2271105DOI10.1016/j.chaos.2005.10.060
- Wiggins, S., Holmes, P., 10.1137/0518047, SIAM J. Math. Anal. 18 (1987), 612-629. MR0883556DOI10.1137/0518047
- Wiggins, S., Holmes, P., 10.1137/0518046, SIAM J. Math. Anal. 18 (1987), 592-611. Zbl0619.34041MR0883555DOI10.1137/0518046
- Yang, Q. G., Chen, G. R., 10.1142/s0218127408021063, Int. J. Bifur. Chaos 18 (2008), 1393-1414. Zbl1147.34306MR2427132DOI10.1142/s0218127408021063
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.