Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity

Zhen Wang; Wei Sun; Zhouchao Wei; Shanwen Zhang

Kybernetika (2017)

  • Volume: 53, Issue: 2, page 354-369
  • ISSN: 0023-5954

Abstract

top
Periodic parametric perturbation control and dynamics at infinity for a 3D autonomous quadratic chaotic system are studied in this paper. Using the Melnikov's method, the existence of homoclinic orbits, oscillating periodic orbits and rotating periodic orbits are discussed after transferring the 3D autonomous chaotic system to a slowly varying oscillator. Moreover, the parameter bifurcation conditions of these orbits are obtained. In order to study the global structure, the dynamics at infinity of this system are analyzed through Poincaré compactification. The simulation results demonstrate feasibility of periodic parametric perturbation control technology and correctness of the theoretical results.

How to cite

top

Wang, Zhen, et al. "Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity." Kybernetika 53.2 (2017): 354-369. <http://eudml.org/doc/288189>.

@article{Wang2017,
abstract = {Periodic parametric perturbation control and dynamics at infinity for a 3D autonomous quadratic chaotic system are studied in this paper. Using the Melnikov's method, the existence of homoclinic orbits, oscillating periodic orbits and rotating periodic orbits are discussed after transferring the 3D autonomous chaotic system to a slowly varying oscillator. Moreover, the parameter bifurcation conditions of these orbits are obtained. In order to study the global structure, the dynamics at infinity of this system are analyzed through Poincaré compactification. The simulation results demonstrate feasibility of periodic parametric perturbation control technology and correctness of the theoretical results.},
author = {Wang, Zhen, Sun, Wei, Wei, Zhouchao, Zhang, Shanwen},
journal = {Kybernetika},
keywords = {Hamiltonian system; Melnikov's methods; homoclinic orbits; periodic orbits; periodic parametric perturbation; dynamics at infinity},
language = {eng},
number = {2},
pages = {354-369},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity},
url = {http://eudml.org/doc/288189},
volume = {53},
year = {2017},
}

TY - JOUR
AU - Wang, Zhen
AU - Sun, Wei
AU - Wei, Zhouchao
AU - Zhang, Shanwen
TI - Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 2
SP - 354
EP - 369
AB - Periodic parametric perturbation control and dynamics at infinity for a 3D autonomous quadratic chaotic system are studied in this paper. Using the Melnikov's method, the existence of homoclinic orbits, oscillating periodic orbits and rotating periodic orbits are discussed after transferring the 3D autonomous chaotic system to a slowly varying oscillator. Moreover, the parameter bifurcation conditions of these orbits are obtained. In order to study the global structure, the dynamics at infinity of this system are analyzed through Poincaré compactification. The simulation results demonstrate feasibility of periodic parametric perturbation control technology and correctness of the theoretical results.
LA - eng
KW - Hamiltonian system; Melnikov's methods; homoclinic orbits; periodic orbits; periodic parametric perturbation; dynamics at infinity
UR - http://eudml.org/doc/288189
ER -

References

top
  1. Chen, Y., Cao, L., Sun, M., Robust midified function projective synchronization in network with unknown parameters and mismatch parameters., Int. J. Nonlinear Sci. 10 (2010), 17-23. MR2721064
  2. Čelikovský, S., Vaněček, A., Bilinear systems and chaos., Kybernetika 30 (1994), 403-424. Zbl0823.93026MR1303292
  3. Dumortier, F., Llibre, J., Artes, J. C., Qualitative Theory of Planar Differential Systems., Springer, Berlin 2006. Zbl1110.34002MR2256001
  4. Fang, Y. Y., Xu, Z. Y., Cai, C. H., Melnikov analysis of feedback control of chaotic dynamics system., J. Wuxi University of Light Industry 20 (2001), 624-629. 
  5. Guckenheimer, J., Holmes, P., 10.1007/978-1-4612-1140-2, Springer, Berlin 2002. Zbl0515.34001MR0709768DOI10.1007/978-1-4612-1140-2
  6. Jafari, S., Sprott, J. C., 10.1016/j.chaos.2013.08.018, Chaos, Solitons and Fractals 57 (2013), 79-84. Zbl1355.37056MR3128600DOI10.1016/j.chaos.2013.08.018
  7. Kuznetsov, A. P., Kuznetsov, S. P., Stankevich, N. V., 10.1016/j.cnsns.2009.06.027, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 1676-1681. DOI10.1016/j.cnsns.2009.06.027
  8. Li, J. B., Zhao, X. H., Liu, Z. R., Theory of Generalized Hamiltonian System and its Applications., Science Press, Beijing 2007. 
  9. Li, Y., Wu, X. Q., Lu, J. A., Lü, J. H., 10.1109/tcsii.2015.2468924, IEEE Trans. Circuits and Systems II 63 (2016), 206-210. DOI10.1109/tcsii.2015.2468924
  10. Liu, K. X., Wu, L. L., Lü, J. H., Zhu, H. H., 10.1007/s11431-015-5989-7, Science China-Technological Sciences 59 (2016), 22-32. DOI10.1007/s11431-015-5989-7
  11. Liu, Y. J., 10.1007/s11071-012-0610-0, Nonlinear Dyn. 70 (2012), 2203-2212. Zbl1268.34092MR2992208DOI10.1007/s11071-012-0610-0
  12. Liu, Z. R., Perturbation Criteria for Chaos., Shanghai Scientific and Technological Education Publishing House, Shanghai 1994. 
  13. Lorenz, E. N., 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2, J. Atmospheric Sci. 20 (1963), 130-141. DOI10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
  14. Lü, J. H., Chen, G. R., 10.1142/s0218127402004620, Int. J. Bifurcation and Chaos 12 (2002), 659-661. Zbl1063.34510MR1894886DOI10.1142/s0218127402004620
  15. Mirus, K. A., Sprott, J. C., 10.1016/s0375-9601(99)00068-7, Phys. Lett. A 254 (1999), 275-278. DOI10.1016/s0375-9601(99)00068-7
  16. Mirus, K. A., Sprott, J. C., 10.1103/physreve.59.5313, Phys. Rev. E 59 (1999), 5313-5324. DOI10.1103/physreve.59.5313
  17. Shen, C. W., Yu, S. M., Chen, G. R., 10.1002/cta.2062, Int. J. Circuit Theory Appl. 43 (2015), 2039-2056. DOI10.1002/cta.2062
  18. Sprott, J. C., 10.1103/physreve.50.r647, Phys. Rev. E 50 (1994), 647-650. MR1381868DOI10.1103/physreve.50.r647
  19. Tan, S. L., Lü, J. H., Hill, D. J., 10.1109/tac.2014.2329235, IEEE Trans. Automat. Control 60 (2015), 576-581. MR3310190DOI10.1109/tac.2014.2329235
  20. Tigan, G., Analysis of a dynamical system derived from the Lorenz system., Scientific Bull. Politehnica University of Timisoara 50 (2005), 61-72. Zbl1107.37039MR2278163
  21. Wang, Q. X., Yu, S. M., Li, C. Q., Lü, J. H., Fang, X. L., Bahi, J. M., 10.1109/tcsi.2016.2515398, IEEE Trans. Circuits and Systems I 63 (2016), 401-412. MR3488842DOI10.1109/tcsi.2016.2515398
  22. Wang, X., Chen, G. R., 10.1007/s11071-012-0669-7, Nonlinear Dynamics 71 (2013), 429-436. MR3015249DOI10.1007/s11071-012-0669-7
  23. Wang, Z., 10.1007/s11071-009-9601-1, Nonlinear Dynmics 60 (2010), 369-373. Zbl1189.70103MR2645029DOI10.1007/s11071-009-9601-1
  24. Wang, Z., Passivity control of nonlinear electromechanical transducer chaotic system., Control Theory Appl. 28 (2011), 1036-1040. 
  25. Wang, Z., Li, Y. X., Xi, X. J., Lü, L., Heteoclinic orbit and backstepping control of a 3D chaotic system., Acta Phys. Sin. 60 (2011), 010513. 
  26. Wang, Z., Sun, W., Wei, Z. C., Xi, X. J., 10.14736/kyb-2014-4-0616, Kybernetika 50 (2014), 616-631. Zbl1310.34063MR3275088DOI10.14736/kyb-2014-4-0616
  27. Wang, Z., Wei, Z. C., Xi, X. J., Li, Y. X., 10.1007/s11071-014-1395-0, Nonlinear Dynamics 77 (2014), 1503-1518. Zbl1331.34044MR3247491DOI10.1007/s11071-014-1395-0
  28. Wei, Z. C., Yang, Q. G., 10.1016/j.camwa.2009.07.058, Comput. Math. Appl. 58 (2009), 1979-1987. Zbl1189.34118MR2557520DOI10.1016/j.camwa.2009.07.058
  29. Wei, Z. C., Zhang, W., Wang, Z., Yao, M. H., 10.1142/s0218127415500285, Int. J. Bifurcation and Chaos 22 (2015), 1550028. Zbl1309.34009MR3316322DOI10.1142/s0218127415500285
  30. Wu, Z. M., Xie, J. Y., Fang, Y. Y., Xu, Z. Y., 10.1016/j.chaos.2005.10.060, Chaos Solitons and Fractals 32 (2007), 104-112. Zbl1138.37314MR2271105DOI10.1016/j.chaos.2005.10.060
  31. Wiggins, S., Holmes, P., 10.1137/0518047, SIAM J. Math. Anal. 18 (1987), 612-629. MR0883556DOI10.1137/0518047
  32. Wiggins, S., Holmes, P., 10.1137/0518046, SIAM J. Math. Anal. 18 (1987), 592-611. Zbl0619.34041MR0883555DOI10.1137/0518046
  33. Yang, Q. G., Chen, G. R., 10.1142/s0218127408021063, Int. J. Bifur. Chaos 18 (2008), 1393-1414. Zbl1147.34306MR2427132DOI10.1142/s0218127408021063

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.