Bilinear systems and chaos
Sergej Čelikovský; Antonín Vaněček
Kybernetika (1994)
- Volume: 30, Issue: 4, page 403-424
- ISSN: 0023-5954
Access Full Article
topHow to cite
topČelikovský, Sergej, and Vaněček, Antonín. "Bilinear systems and chaos." Kybernetika 30.4 (1994): 403-424. <http://eudml.org/doc/27317>.
@article{Čelikovský1994,
author = {Čelikovský, Sergej, Vaněček, Antonín},
journal = {Kybernetika},
keywords = {skew-symmetry; eigenvalue; bilinear system; homoclinic orbits; chaotic behavior; numerical simulation},
language = {eng},
number = {4},
pages = {403-424},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Bilinear systems and chaos},
url = {http://eudml.org/doc/27317},
volume = {30},
year = {1994},
}
TY - JOUR
AU - Čelikovský, Sergej
AU - Vaněček, Antonín
TI - Bilinear systems and chaos
JO - Kybernetika
PY - 1994
PB - Institute of Information Theory and Automation AS CR
VL - 30
IS - 4
SP - 403
EP - 424
LA - eng
KW - skew-symmetry; eigenvalue; bilinear system; homoclinic orbits; chaotic behavior; numerical simulation
UR - http://eudml.org/doc/27317
ER -
References
top- F. Alberting, E. D. Sontag, Some connections between chaotic dynamical systems and control systems, In: Proceedings of First European Control Conference, Grenoble, 1991, pp. 159-163. (1991)
- S. Čelikovský, A. Vaněček, Bilinear systems as the strongly nonlinear systems, In: Systems Structure and Control (V. Strejc, ed.), Pergamon Press, Oxford 1992, pp. 264-267. (1992)
- S. Čelikovský, On the stabilization of homogeneous bilinear systems, Systems and Control Lett. 21 (1993), 6. (1993) MR1249929
- W. J. Freeman, Strange attractors that govern mammalian brain dynamics shown by trajectories of EEG potential, IEEE Trans. Circuits and Systems 35 (1988), 791-783. (1988) MR0947807
- R. Genesio, A. Tesi, Chaos prediction in nonlinear feedback systems, IEE Proc. D 138 (1991), 313-320. (1991) Zbl0754.93024
- R. Genesio, A. Tesi, Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems, Automatica 28 (1992), 531-548. (1992) Zbl0765.93030
- R. Genesio, A. Tesi, A harmonic balance approach for chaos prediction: the Chua's circuit, Internat. J. of Bifurcation and Chaos 2 (1992), 61-79. (1992) MR1166315
- A. L. Goldberger, Nonlinear dynamics, fractals, cardiac physiology and sudden death, In: Temporal Disorder in Human Oscillatory Systems, Springer-Verlag, Berlin 1987. (1987) MR0901320
- J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York 1986. (1986) MR1139515
- A. V. Holden (ed.), Chaos, Manchester Univ., Manchester 1986. (1986) Zbl0743.58005
- H. Hyotyniemi, Postponing chaos using a robust stabilizer, In: Preprints of First IFAC Symp. Design Methods of Control Systems, Pergamon Press, Oxford 1991, pp. 568-572. (1991)
- L. O. Chua (ed.), Special Issue on Chaotic Systems, IEEE Proc. 6 (1987), 8, 75. (1987)
- E. N. Lorenz, Deterministic non-periodic flow, J. Atmospheric Sci. 20 (1965), 130-141. (1965)
- G. B. Di Massi, A. Gombani, On observability of chaotic systems: an example, Realization and Modelling in Systems Theory. In: Proc. International Symposium MTNS-89, Vol. II, Birkhäuser, Boston -- Basel -- Berlin 1990, pp. 489-496. (1990) MR1115421
- R. R. Mohler, Bilinear Control Processes, Academic Press, New York 1973. (1973) Zbl0343.93001MR0332249
- J. M. Ottino, The mixing of fluids, Scientific Amer. 1989, 56-67. (1989)
- C. T. Sparrow, The Lorenz Equations: Bifurcation, Chaos and Strange Attractors, Springer-Verlag, New York 1982. (1982) MR0681294
- A. Vaněček, Strongly nonlinear and other control systems, Problems Control Inform. Theory 20 (1991), 3-12. (1991) MR1102179
- A. Vaněček, S. Čelikovský, Chaos synthesis via root locus, IEEE Trans. Circuits and Systems 41 (1994), 1, 54-60. (1994)
- A. Vaněček, S. Čelikovský, Synthesis of chaotic systems, Kybernetika, accepted.
- S. Wiggins, Global Bifurcations and Chaos. Analytical Methods, Springer-Verlag, New York 1988. (1988) Zbl0661.58001MR0956468
Citations in EuDML Documents
top- Antonín Vaněček, Sergej Čelikovský, Synthesis of chaotic systems
- Sergej Čelikovský, Observer form of the hyperbolic type generalized Lorenz system and its use for chaos synchronization
- Zdeněk Beran, On characterization of the solution set in case of generalized semiflow
- Volodymyr Lynnyk, Sergej Čelikovský, On the anti–synchronization detection for the generalized Lorenz system and its applications to secure encryption
- Zhen Wang, Wei Sun, Zhouchao Wei, Shanwen Zhang, Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.