Dynamics analysis and robust modified function projective synchronization of Sprott E system with quadratic perturbation
Zhen Wang; Wei Sun; Zhouchao Wei; Xiaojian Xi
Kybernetika (2014)
- Volume: 50, Issue: 4, page 616-631
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topWang, Zhen, et al. "Dynamics analysis and robust modified function projective synchronization of Sprott E system with quadratic perturbation." Kybernetika 50.4 (2014): 616-631. <http://eudml.org/doc/262018>.
@article{Wang2014,
abstract = {Hopf bifurcation, dynamics at infinity and robust modified function projective synchronization (RMFPS) problem for Sprott E system with quadratic perturbation were studied in this paper. By using the method of projection for center manifold computation, the subcritical and the supercritical Hopf bifurcation were analyzed and obtained. Then, in accordance with the Poincare compactification of polynomial vector field in $R^3$, the dynamical behaviors at infinity were described completely. Moreover, a RMFPS scheme of this special system was proposed and proved based on Lyapunov direct method. The simulation results demonstrate the correctness of the dynamics analysis and the effectiveness of the proposed synchronization strategy.},
author = {Wang, Zhen, Sun, Wei, Wei, Zhouchao, Xi, Xiaojian},
journal = {Kybernetika},
keywords = {Hopf bifurcation; center manifold theorem; Poincare compactification; robust modified function projective synchronization; chaotic systems; Hopf bifurcation; center manifold theorem; Poincaré compactification; robust modified function projective synchronization; chaotic systems},
language = {eng},
number = {4},
pages = {616-631},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Dynamics analysis and robust modified function projective synchronization of Sprott E system with quadratic perturbation},
url = {http://eudml.org/doc/262018},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Wang, Zhen
AU - Sun, Wei
AU - Wei, Zhouchao
AU - Xi, Xiaojian
TI - Dynamics analysis and robust modified function projective synchronization of Sprott E system with quadratic perturbation
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 4
SP - 616
EP - 631
AB - Hopf bifurcation, dynamics at infinity and robust modified function projective synchronization (RMFPS) problem for Sprott E system with quadratic perturbation were studied in this paper. By using the method of projection for center manifold computation, the subcritical and the supercritical Hopf bifurcation were analyzed and obtained. Then, in accordance with the Poincare compactification of polynomial vector field in $R^3$, the dynamical behaviors at infinity were described completely. Moreover, a RMFPS scheme of this special system was proposed and proved based on Lyapunov direct method. The simulation results demonstrate the correctness of the dynamics analysis and the effectiveness of the proposed synchronization strategy.
LA - eng
KW - Hopf bifurcation; center manifold theorem; Poincare compactification; robust modified function projective synchronization; chaotic systems; Hopf bifurcation; center manifold theorem; Poincaré compactification; robust modified function projective synchronization; chaotic systems
UR - http://eudml.org/doc/262018
ER -
References
top- Chen, G. R., Ueta, T., 10.1142/S0218127499001024, Int. J. Bifur. Chaos 9 (1999), 1465-1466. Zbl0962.37013MR1729683DOI10.1142/S0218127499001024
- Chen, Y., Cao, L., Sun, M., Robust midified function projective synchronization in network with unknown parameters and mismatch parameters., Int. J. Nonlinear Sci. 10 (2010), 17-23. MR2721064
- Chen, Y., Lü, J. H., Lin, Z. L., 10.1016/j.automatica.2013.02.021, Automatica 49 (2013), 1768-1775. MR3049226DOI10.1016/j.automatica.2013.02.021
- Chen, Y., Lü, J. H., Yu, X. H., Hill, D. J., 10.1109/MCAS.2013.2271443, IEEE Circuits Syst. Magazine 13 (2013), 21-34. DOI10.1109/MCAS.2013.2271443
- Chen, Y., Lü, J. H., Yu, X. H., Lin, Z. L., 10.1137/110850116, SIAM J. Control Optim. 51 (2013), 3274-3301. MR3090151DOI10.1137/110850116
- Cima, A., Llibre, J., 10.1090/S0002-9947-1990-0998352-5, T. Amer. Math. Soc. 318 (1990), 557-579. MR0998352DOI10.1090/S0002-9947-1990-0998352-5
- Dumortier, F., Llibre, J., Artes, J. C., Qualitative Theory of Planar Differential Systems., Springer, Berlin 2006. Zbl1110.34002MR2256001
- Kuznetsov, A. P., Kuznetsov, S. P., Stankevich, N. V., 10.1016/j.cnsns.2009.06.027, Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 1676-1681. DOI10.1016/j.cnsns.2009.06.027
- Kuznetsov, Y. A., Elements of Applied Bifurcation Theory., Springer-Verlag, New York 1998. Zbl1082.37002MR1711790
- Lee, T. H., Park, J. H., 10.1088/0256-307X/26/9/090507, Chin. Phys. Lett. 26 (2009), 090507. DOI10.1088/0256-307X/26/9/090507
- Leonov, G. A., Kuznetsov, N. V., 10.1007/978-3-319-00542-3_3, Adv. Intelligent Syst. Comput. 210 (2013), 5-13. Zbl1272.93064DOI10.1007/978-3-319-00542-3_3
- Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I., 10.1016/j.physleta.2011.04.037, Phys. Lett. A 375 (2011), 2230-2233. Zbl1242.34102MR2800438DOI10.1016/j.physleta.2011.04.037
- Liang, H. T., Wang, Z., Yue, Z. M., Lu, R. H., Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication., Kybernetika 48 (2012), 190-205. Zbl1256.93084MR2954320
- Liu, Y. J., Analysis of global dynamics in an unusual 3D chaotic system., Nonlinear Dyn. 70 (2012), 2203-2212. Zbl1268.34092MR2992208
- Liu, Y. J., Yang, Q. G., 10.1142/S0218127411029938, Int. J. Bifur. Chaos 21 (2011), 2559-2582. Zbl1248.34069MR2859678DOI10.1142/S0218127411029938
- Lorenz, E. N., 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2, J. Atmospheric Sci. 20 (1963), 130-141. DOI10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
- Messias, M., Gouveia, M. R., 10.1007/s11071-011-0288-8, Nonlinear Dyn. 69 (2012), 577-587. Zbl1256.37007MR2929895DOI10.1007/s11071-011-0288-8
- Shen, C. W., Yu, S. M., Lü, J. H., Chen, G. R., 10.1109/TCSI.2013.2283994, IEEE Trans. Circuits-I 61 (2014), 854-864. DOI10.1109/TCSI.2013.2283994
- Sprott, J. C., 10.1103/PhysRevE.50.R647, Phys. Rev. E 50 (1994), 647-650. MR1381868DOI10.1103/PhysRevE.50.R647
- Sudheer, K. S., Sabir, M., 10.1016/j.physleta.2009.08.027, Phys. Lett. A 373 (2009), 3743-3748. MR2569019DOI10.1016/j.physleta.2009.08.027
- Vaněček, A., Čelikovský, S., Control systems: From Linear Analysis to Synthesis of Chaos., Prentice-Hall, London 1996. Zbl0874.93006
- Wang, X., Chen, G. R., 10.1016/j.cnsns.2011.07.017, Commun. Nonlinear Sci. Numer. Simul. 17 (2012). 1264-1272. MR2843793DOI10.1016/j.cnsns.2011.07.017
- Wang, Z., 10.1007/s11071-009-9601-1, Nonlinear Dyn. 60 (2010), 369-373. Zbl1189.70103MR2645029DOI10.1007/s11071-009-9601-1
- Wang, Z., Li, Y. X., Xi, X. J., Lü, L., Heteoclinic orbit and backstepping control of a 3D chaotic system., Acta Phys. Sin. 60 (2011), 010513.
- Wei, Z. C., Wang, Z., Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium., Kybernetika 49 (2013), 359-374. Zbl1276.34043MR3085401
- Yang, Q. G., Chen, G. R., 10.1142/S0218127408021063, Int. J. Bifur. Chaos 18 (2008), 1393-1414. Zbl1147.34306MR2427132DOI10.1142/S0218127408021063
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.