On the projective Finsler metrizability and the integrability of Rapcsák equation

Tamás Milkovszki; Zoltán Muzsnay

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 2, page 469-495
  • ISSN: 0011-4642

Abstract

top
A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences determining the 2-acyclicity of the symbol of the corresponding differential operator. Therefore the system is not integrable and higher order obstruction exists.

How to cite

top

Milkovszki, Tamás, and Muzsnay, Zoltán. "On the projective Finsler metrizability and the integrability of Rapcsák equation." Czechoslovak Mathematical Journal 67.2 (2017): 469-495. <http://eudml.org/doc/288197>.

@article{Milkovszki2017,
abstract = {A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences determining the 2-acyclicity of the symbol of the corresponding differential operator. Therefore the system is not integrable and higher order obstruction exists.},
author = {Milkovszki, Tamás, Muzsnay, Zoltán},
journal = {Czechoslovak Mathematical Journal},
keywords = {Euler-Lagrange equation; metrizability; projective metrizability; geodesics; spray; formal integrability},
language = {eng},
number = {2},
pages = {469-495},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the projective Finsler metrizability and the integrability of Rapcsák equation},
url = {http://eudml.org/doc/288197},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Milkovszki, Tamás
AU - Muzsnay, Zoltán
TI - On the projective Finsler metrizability and the integrability of Rapcsák equation
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 469
EP - 495
AB - A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences determining the 2-acyclicity of the symbol of the corresponding differential operator. Therefore the system is not integrable and higher order obstruction exists.
LA - eng
KW - Euler-Lagrange equation; metrizability; projective metrizability; geodesics; spray; formal integrability
UR - http://eudml.org/doc/288197
ER -

References

top
  1. Bácsó, S., Szilasi, Z., On the projective theory of sprays, Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 26 (2010), 171-207. (2010) Zbl1240.53047MR2754415
  2. Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L., Griffiths, P. A., 10.1007/978-1-4613-9714-4, Mathematical Sciences Research Institute Publications 18, Springer, New York (1991). (1991) Zbl0726.58002MR1083148DOI10.1007/978-1-4613-9714-4
  3. Bucataru, I., Milkovszki, T., Muzsnay, Z., 10.1007/s00009-016-0762-0, Mediterr. J. Math. (2016), 4567-4580. (2016) Zbl1356.53021MR3564521DOI10.1007/s00009-016-0762-0
  4. Bucataru, I., Muzsnay, Z., 10.3842/SIGMA.2011.114, SIGMA, Symmetry Integrability Geom. Methods Appl. (electronic only) 7 (2011), Paper 114, 22 pages. (2011) Zbl1244.49072MR2861227DOI10.3842/SIGMA.2011.114
  5. Bucataru, I., Muzsnay, Z., 10.1142/S0129167X12500991, Int. J. Math. 23 (2012), 1250099, 15 pages. (2012) Zbl1263.53070MR2959445DOI10.1142/S0129167X12500991
  6. Crampin, M., Isotropic and R-flat sprays, Houston J. Math. 33 (2007), 451-459. (2007) Zbl1125.53012MR2308989
  7. Crampin, M., On the inverse problem for sprays, Publ. Math. 70 (2007), 319-335. (2007) Zbl1127.53015MR2310654
  8. Crampin, M., Some remarks on the Finslerian version of Hilbert's fourth problem, Houston J. Math. 37 (2011), 369-391. (2011) Zbl1228.53085MR2794554
  9. Crampin, M., Mestdag, T., Saunders, D. J., 10.1016/j.difgeo.2012.07.004, Differ. Geom. Appl. 30 (2012), 604-621. (2012) Zbl1257.53105MR2996856DOI10.1016/j.difgeo.2012.07.004
  10. Crampin, M., Mestdag, T., Saunders, D. J., 10.1016/j.difgeo.2012.10.012, Differ. Geom. Appl. 31 (2013), 63-79. (2013) Zbl1262.53064MR3010078DOI10.1016/j.difgeo.2012.10.012
  11. Do, T., Prince, G., 10.1016/j.difgeo.2016.01.005, Differ. Geom. Appl. 45 (2016), 148-179. (2016) Zbl1333.37070MR3457392DOI10.1016/j.difgeo.2016.01.005
  12. Frölicher, A., Nijenhuis, A., Theory of vector-valued differential forms. I: Derivations in the graded ring of differential forms, Nederl. Akad. Wet., Proc., Ser. A. 59 (1956), 338-359. (1956) Zbl0079.37502MR0082554
  13. Grifone, J., Muzsnay, Z., 10.1142/9789812813596, World Scientific Publishing, Singapore (2000). (2000) Zbl1023.49027MR1769337DOI10.1142/9789812813596
  14. Klein, J., Voutier, A., 10.5802/aif.282, Ann. Inst. Fourier 18 French (1968), 241-260. (1968) Zbl0181.49902MR0247599DOI10.5802/aif.282
  15. Matveev, V. S., 10.1142/S0129167X12500930, Int. J. Math. 23 (2012), 1250093, 14 pages. (2012) Zbl1253.53018MR2959439DOI10.1142/S0129167X12500930
  16. Mestdag, T., 10.1007/s00009-014-0505-z, Mediterr. J. Math. 13 (2016), 825-839. (2016) Zbl1338.53103MR3483865DOI10.1007/s00009-014-0505-z
  17. Muzsnay, Z., The Euler-Lagrange PDE and Finsler metrizability, Houston J. Math. 32 (2006), 79-98. (2006) Zbl1113.53049MR2202354
  18. Rapcsák, A., Über die bahntreuen Abbildungen metrischer Räume, Publ. Math. German 8 (1961), 285-290. (1961) Zbl0101.39901MR0138079
  19. Sarlet, W., Thompson, G., Prince, G. E., 10.1090/S0002-9947-02-02994-X, Trans. Am. Math. Soc. 354 (2002), 2897-2919. (2002) Zbl1038.37044MR1895208DOI10.1090/S0002-9947-02-02994-X
  20. Shen, Z., 10.1007/978-94-015-9727-2, Kluwer Academic Publishers, Dordrecht (2001). (2001) Zbl1009.53004MR1967666DOI10.1007/978-94-015-9727-2
  21. Szilasi, J., Lovas, R. L., Kertész, D. C., Connections, Sprays and Finsler Structures, World Scientific Publishing, Hackensack (2014). (2014) Zbl06171673MR3156183
  22. Szilasi, J., Vattamány, S., 10.1023/A:1014928103275, Period. Math. Hung. 44 (2002), 81-100. (2002) Zbl0997.53056MR1892276DOI10.1023/A:1014928103275

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.