On the capacity of asymptotically mean stationary channels

Štefan Šujan

Kybernetika (1981)

  • Volume: 17, Issue: 3, page 222-233
  • ISSN: 0023-5954

How to cite

top

Šujan, Štefan. "On the capacity of asymptotically mean stationary channels." Kybernetika 17.3 (1981): 222-233. <http://eudml.org/doc/28586>.

@article{Šujan1981,
author = {Šujan, Štefan},
journal = {Kybernetika},
keywords = {channel capacity; Shannon capacity; block coding capacity; positive block coding theorem and its weak converse},
language = {eng},
number = {3},
pages = {222-233},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the capacity of asymptotically mean stationary channels},
url = {http://eudml.org/doc/28586},
volume = {17},
year = {1981},
}

TY - JOUR
AU - Šujan, Štefan
TI - On the capacity of asymptotically mean stationary channels
JO - Kybernetika
PY - 1981
PB - Institute of Information Theory and Automation AS CR
VL - 17
IS - 3
SP - 222
EP - 233
LA - eng
KW - channel capacity; Shannon capacity; block coding capacity; positive block coding theorem and its weak converse
UR - http://eudml.org/doc/28586
ER -

References

top
  1. R. J. Fontana R. M. Gray, J. C. Kieffer, Asymptotically mean stationary channels, (preprint). MR0619116
  2. R. M. Gray, J. C. Kieffer, Asymptotically mean stationary measures, (submitted to Annals of Prob.). Zbl0447.28014
  3. R. M. Gray D. S. Ornstein, Block coding for discrete stationary d-continuous noisy channels, IEEE Trans, on Inform. Theory IT-25 (1979), 292-306. (1979) MR0528007
  4. K. Jacobs, Die Übertragung diskreter Informationen durch periodische und fastperiodische Kanäle, Math. Annalen 757(1959), 125-135. (1959) Zbl0089.33903MR0128003
  5. A. I. Khinchine, Mathematical Foundations of Information Theory, Dover, New York 1957. (1957) MR0092709
  6. J. Nedoma, On non-ergodic channels, Trans. Second Prague Conf. Inform. Theory etc., NČSAV, Prague 1960, 143-181. (1960) Zbl0096.11101MR0129055
  7. K. R. Parthasarathy, On the integral representation of the rate of transmission of a stationary channel, Ill. J. Math. 2 (1961), 299-305. (1961) Zbl0100.33903MR0121259
  8. K. R. Parthasarathy, Effective entropy rate and transmission of information through channels with additive random noise, Sankhya A 25 (1963), 75-84. (1963) Zbl0119.34003MR0173568
  9. Š. Šujan, Existence of asymptotic rate for asymptotically mean stationary sources with countable alphabets, Trans. Third Czechoslovak-Soviet-Hungarian Seminar on Inform. Theory, 1980, 201-206. (1980) 
  10. Š. Šujan, Channels with additive asymptotically mean stationary noise, Kybernetika 17 (1981), 1, 1-15. (1981) MR0629345
  11. K. Winkelbauer, Channels with finite past history, Trans. Second Prague Conf. Infor. Theory etc., NČSAV, Prague 1960, 685-831. (1960) Zbl0161.16904MR0129056
  12. K. Winkelbauer, On discrete information sources, Trans. Third Prague Conf. Inform. Theory etc., NČSAV, Prague 1964, 765-830. (1964) Zbl0126.35702MR0166000
  13. K. Winkelbauer, On the asymptotic rate of non-ergodic information sources, Kybernetika 6 (1970), 127-148. (1970) Zbl0245.94013MR0275979
  14. K. Winkelbauer, On the coding theorem for decomposable discrete information channels I, Kybernetika 7 (1971), 109-123. (1971) Zbl0244.94006MR0300751
  15. K. Winkelbauer, On the coding theorem for decomposable discrete information channels II, Kybernetika 7(1971), 230-255. (1971) MR0300751
  16. K. Winkelbauer, On the regularity condition for decomposable communication channels, Kybernetika 7 (1971), 314-327. (1971) Zbl0244.94007MR0349272
  17. K. Winkelbauer, On the capacity of decomposable channels, Trans. Sixth Prague Conf. Inform. Theory etc., Academia, Prague 1973, 903 - 914. (1973) Zbl0298.94026MR0371509
  18. J. Wolfowitz, Coding Theorems of Information Theory, Sec. ed., Springer-Verlag, Berlin 1964. (1964) Zbl0132.39704MR0176851

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.