Remarks on Homogeneous Complex Manifolds Satisfying Levi Conditions

Alan Huckleberry

Bollettino dell'Unione Matematica Italiana (2010)

  • Volume: 3, Issue: 1, page 1-23
  • ISSN: 0392-4041

Abstract

top
Homogeneous complex manifolds satisfying various types of Levi conditions are considered. Classical results which were of particular interest to Andreotti are recalled. Convexity and concavity properties of flag domains are discussed in some detail. A precise classification of pseudoconvex flag domains is given. It is shown that flag domains which are in a certain sense generic are pseudoconcave.

How to cite

top

Huckleberry, Alan. "Remarks on Homogeneous Complex Manifolds Satisfying Levi Conditions." Bollettino dell'Unione Matematica Italiana 3.1 (2010): 1-23. <http://eudml.org/doc/290678>.

@article{Huckleberry2010,
abstract = {Homogeneous complex manifolds satisfying various types of Levi conditions are considered. Classical results which were of particular interest to Andreotti are recalled. Convexity and concavity properties of flag domains are discussed in some detail. A precise classification of pseudoconvex flag domains is given. It is shown that flag domains which are in a certain sense generic are pseudoconcave.},
author = {Huckleberry, Alan},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {1-23},
publisher = {Unione Matematica Italiana},
title = {Remarks on Homogeneous Complex Manifolds Satisfying Levi Conditions},
url = {http://eudml.org/doc/290678},
volume = {3},
year = {2010},
}

TY - JOUR
AU - Huckleberry, Alan
TI - Remarks on Homogeneous Complex Manifolds Satisfying Levi Conditions
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/2//
PB - Unione Matematica Italiana
VL - 3
IS - 1
SP - 1
EP - 23
AB - Homogeneous complex manifolds satisfying various types of Levi conditions are considered. Classical results which were of particular interest to Andreotti are recalled. Convexity and concavity properties of flag domains are discussed in some detail. A precise classification of pseudoconvex flag domains is given. It is shown that flag domains which are in a certain sense generic are pseudoconcave.
LA - eng
UR - http://eudml.org/doc/290678
ER -

References

top
  1. ANDREOTTI, A., Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves, Bull. Soc. Math. France, 91 (1963), 1-38. Zbl0113.06403MR152674
  2. ANDREOTTI, A. - GHERARDELLI, F., Some remarks on quasi-abelian manifolds, Global analysis and its applications (Lectures, Internat. Sem. Course, Internat. Centre Theoret. Phy. Trieste, 1972), Vol. II. Internat. Atomc Energy Agency, Vienna (1974), 203-206. MR435460
  3. ANDREOTTI, A. - GRAUERT, H., Algebraische Körper von automorphen Funktionen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl.II, 1961 (1961), 39-48. MR132211
  4. ANDREOTTI, A. - GRAUERT, H., Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259. Zbl0106.05501MR150342
  5. ANDREOTTI, A. - HUCKLEBERRY, A., Pseudoconcave Lie groups, Compositio Math., 25 (1972), 109-115. Zbl0239.32018MR316752
  6. ANDREOTTI, A. - NORGUET, F., La convexité holomorphe dans l'espace analytique des cycles d'une variété algébrique. Ann. Scuola Norm. Sup. Pisa (3), 21 (1967), 31-82. Zbl0176.04001MR239118
  7. ANDREOTTI, A. - NORGUET, F., Cycles of algebraic manifolds and ¯ -cohomology, Ann. Scuola Norm. Sup. Pisa (3), 25 (1971), 59-114. Zbl0212.53701MR288314
  8. ABE, Y. - KOPFERMANN, K., Line bundles, cohomology and quasi-abelian, Lecture Notes in Mathematics1759, Springer-VerlagBerlin (2001). Zbl0974.22004MR1836462DOI10.1007/b80605
  9. BARLET, D., Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, "Fonctions de plusieurs variables complexes", II (Sém. François Norguet, 1974-1975), Springer Lecture Notes in Math., 482 (1975), 1-158. MR399503
  10. BERTELOOT, F., Fontions plurisousharmoniques sur SL(2,C) invariantes par un sous-groupe monogène, J. Analyse Math., 48 (1987), 267-276. Zbl0635.32018MR910012DOI10.1007/BF02790332
  11. BERTELOOT, F. - OELJEKLAUS, K., Invariant plurisubharmonic functions and hypersurfaces on semisimple complex Lie groups, Math. Ann., 281, no. 3 (1988), 513-530. Zbl0653.32029MR954156DOI10.1007/BF01457160
  12. BOREL, A., Pseudo-concavité et groupes arithmétiques, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York (1970), 70-84. MR262547
  13. COUSIN, P., Sur les fonctions périodique, Ann. Sci. École Norm. Sup. (3), 19 (1902), 9-61. Zbl33.0438.01MR1509004
  14. FELS, G. - HUCKLEBERRY, A. - WOLF, J. A., Cycles Spaces of Flag Domains: A Complex Geometric Viewpoint, Progress in Mathematics, Volume 245 (Springer/ BirkhäuserBoston, 2005). Zbl1084.22011MR2188135
  15. GILLIGAN, B. - HUCKLEBERRY, A., On non-compact complex nil-manifolds, Math. Ann., 238 (1978), 39-49. Zbl0405.32009MR510305DOI10.1007/BF01351452
  16. HEINZNER, P. - IANNUZZI, A., Integration of local actions on holomlorphic fiber spaces, Nagoya Math. J., 146 (1997), 31-53. Zbl0879.55006MR1460953DOI10.1017/S0027763000006206
  17. HONG, J. - HUCKLEBERRY, A., On closures of cycle spaces of flag domains, Manuscripta Math., 121 (2006), 317-327. Zbl1115.22011MR2271422DOI10.1007/s00229-006-0039-1
  18. HUCKLEBERRY, A. - NIRENBERG, R., On k-pseudoflat complex spaces, Math. Ann., 200, 1 (1973), 1-10. Zbl0237.32007MR324065DOI10.1007/BF01578288
  19. HUCKLEBERRY, A. - SNOW, D., Pseudoconcave Homogeneous Manifolds, Ann. Scuola Norm. Sup. Pisa7 (1980), 29-54. Zbl0506.32015MR577324
  20. HUCKLEBERRY, A. - SNOW, D., A Classification of Strictly Pseudoconcave Homogeneous Manifolds, Ann. Scuola Norm. Sup. Pisa8 (1981), 231-255. Zbl0464.32019MR623936
  21. HUCKLEBERRY, A. - STOLL, W., On the Thickness of the Shilov boundary, Math. Ann., 207 (1974), 213-231. Zbl0276.46026MR338445DOI10.1007/BF01350599
  22. HUCKLEBERRY, A. - WOLF, J. A., Cycle space constructions for exhaustions of flag domains (To appear in Ann. Scuola Norm. Pisa93 (2010), arXiv:0807.2062). Zbl1209.32019MR2722656
  23. KOPFERMANN, K., Maximale Untergruppen Abelscher komplexer Liescher Gruppen, Schr. Math. Inst. Univ. Münster, 29 (1964). MR166298
  24. LOEB, J.-J., Action d'une forme réelle d'un groupe de Lie complex sur les fonctions plurisousharmoniques, Ann. Inst. Fourier (Grenoble), 35 , no. 4 (1985), 59-97. Zbl0563.32013MR812319
  25. LOEB, JEAN-JACQUES - OELJEKLAUS, K. - RICHTHOFER, W., A decomposition theorem for complex nilmanifolds, Canad. Math. Bull, 30, no. 3 (1987), 377-378. Zbl0627.32023MR906364DOI10.4153/CMB-1987-055-2
  26. MATSUSHIMA, Y., Espace homogèenes de Stein des groupes de Lie complexes, Nagoya Math. J., 16 (1960), 205-218. Zbl0094.28201MR109854
  27. MATSUSHIMA, Y. - MORIMOTO, A., Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France, 88 (1960), 137-155. Zbl0094.28104MR123739
  28. MORIMOTO, A., Non-compact complex Lie groups without non-constant holomorphic functions, Proc. Conf. Complex Analysis (Minneapolis), Springer, Berlin (1964), 256-272. MR181702
  29. SCHMID, W., Homogeneous complex manifolds and representations of semisimple Lie groups, thesis, University of California at Berkeley, 1967. MR2617034
  30. SCHMID, W. - WOLF, J. A., A vanishing theorem for open orbits on complex flag manifolds, Proc. Amer. Math. Soc., 92 (1984), 461-464. Zbl0558.22010MR759674DOI10.2307/2044856
  31. WOLF, J. A., The action of a real semisimple Lie group on a complex manifold, I: Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc., 75 (1969), 1121-1237. Zbl0183.50901MR251246DOI10.1090/S0002-9904-1969-12359-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.