A classification of strictly pseudoconcave homogeneous manifolds

A. T. Huckleberry; D. Snow

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1981)

  • Volume: 8, Issue: 2, page 231-255
  • ISSN: 0391-173X

How to cite

top

Huckleberry, A. T., and Snow, D.. "A classification of strictly pseudoconcave homogeneous manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 8.2 (1981): 231-255. <http://eudml.org/doc/83857>.

@article{Huckleberry1981,
author = {Huckleberry, A. T., Snow, D.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {holomorphic action of complex Lie group; homogeneous strictly pseudoconcave complex manifold; Lie group},
language = {eng},
number = {2},
pages = {231-255},
publisher = {Scuola normale superiore},
title = {A classification of strictly pseudoconcave homogeneous manifolds},
url = {http://eudml.org/doc/83857},
volume = {8},
year = {1981},
}

TY - JOUR
AU - Huckleberry, A. T.
AU - Snow, D.
TI - A classification of strictly pseudoconcave homogeneous manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1981
PB - Scuola normale superiore
VL - 8
IS - 2
SP - 231
EP - 255
LA - eng
KW - holomorphic action of complex Lie group; homogeneous strictly pseudoconcave complex manifold; Lie group
UR - http://eudml.org/doc/83857
ER -

References

top
  1. [1] A. Andreotti - Y.T. Siu, Projective imbeddings of pseudoconcaves spaces, Ann. Scuola Norm. Sup. Pisa, (3) 23 (1970), pp. 231-278. Zbl0195.36901MR265633
  2. [2] S. Bochner - D. Montgomery, Groups on analytic manifolds, Ann. of Math., (2) 48 (1947), pp. 659-669. Zbl0030.07501MR22223
  3. [3] A. Borel - R. Remmert, Über kompakte homogene Kählersche Mannigfaltigkeiten, Math. Ann., 145 (1962), pp. 429-439. Zbl0111.18001MR145557
  4. [4] C. Chevalley, Theory of Lie Groups, Princeton University Press, Princeton, 1946. Zbl0063.00842
  5. [5] M. Cornalba - P. Griffiths, Analytic cycles and vector bundles on non-compact algebraic varieties, Invent. Math.,28 (1975), pp. 1-106. Zbl0293.32026MR367263
  6. [6] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962. Zbl0111.18101MR145455
  7. [7] A. Huckleberry, Holomorphic fibrations of bounded domains, Math. Ann., 227 (1977), pp. 61-66. Zbl0346.32037MR435457
  8. [8] A. Huckleberry - E. Oelijeklaus, A characterization of homogeneous cones, Math. Z., 170 (1980), pp. 181-194. Zbl0412.32030MR562587
  9. [9] A. Huckleberry - D. Snow, Pseudoconcave homogeneous manifolds, Ann. Scuola Norm. Sup. Pisa, (4) 7 (1980), pp. 29-54. Zbl0506.32015MR577324
  10. [10] W. Kaup, Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Invent. Math., 3 (1967), pp. 43-70. Zbl0157.13401MR216030
  11. [11] H. Kerner, Über die Automorphismengruppen kompakter komplexer Räume, Arch. Math., 11 (1960), pp. 282-288. Zbl0112.31205MR117759
  12. [12] Y. Matsushima, Espaces homogènes de Stein des groupes de Lie complexes I, Nagoya Math. J., 16 (1960), pp. 205-218. Zbl0094.28201MR109854
  13. [13] A. Morimoto - T. Nagano, On pseudoconformal transformations of hypersurfaces, J. Math. Soc. Japan, 15 (1963), pp. 289-300. Zbl0119.06701MR155341
  14. [14] T. Nagano, Transformation groups with (n —1)-dimensional orbits on non-compact manifolds, Nagoya Math. J., 14 (1959), pp. 25-38. Zbl0100.18004MR104760
  15. [15] T. Nagano, Transformation groups on compact symmetric spaces, Trans. Amer. Math. Soc., 118 (1965), pp. 428-453. Zbl0151.28801MR182937
  16. [16] E. Oeljeklaus, Ein Hebbarkeitssatz für Automorphismengruppen kompakter komplexer Mannigfaltigkeiten, Math. Ann., 190 (1970), pp. 154-166. Zbl0195.36902MR279332
  17. [17] R. Remmert - K. Stein, Über die wesentlichen singularitäten analytischer Mengen, Math. Ann., 126 (1953), pp. 263-306. Zbl0051.06303MR60033
  18. [18] R. Remmert - T. Van De Ven, Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten, Topology, 2 (1963), pp. 137-157. Zbl0122.08602MR148085
  19. [19] H. Rossi, Holomorphically convex sets in several complex variables, Ann. of Math., (2) 74 (1961), pp. 470-493. Zbl0107.28601MR133479
  20. [20] H. Rossi, Vector fields on analytic spaces, Ann. of Math., (3) 78 (1963), pp. 455-467. Zbl0129.29701MR162973
  21. [21] H. Rossi, Attaching analytic spaces to an analytic space along a smooth pseudoconcave boundary, Proc. of the Conf. on Complex Analysis, Minneapolis1964, Springer Verlag, 1965. Zbl0143.30301MR176106
  22. [22] H. Rossi, Homogeneous strongly pseudoconvex hypersurfaces, Rice Univ. Studies Nos. 1, 2, 59 (1973), pp. 131-145. Zbl0277.32011MR330514
  23. [23] J.P. Serre, Quelques problèmes globaux relatifs aux variétés de Stein, Coll. sur les fonctions de plusieurs variables, Bruxelles (1953), pp. 57-68. Zbl0053.05302MR64155
  24. [24] R. Wells, Function theory on differentiable submanifolds, preprint. Zbl0293.32001MR357856
  25. [25] J.A. Wolf, The action of a real semi-simple group on a complex flag manifold.- I: Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc., 6 (1969), pp. 1121-1237. Zbl0183.50901MR251246

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.