Variational Formulation of Phase Transitions with Glass Formation
Bollettino dell'Unione Matematica Italiana (2013)
- Volume: 6, Issue: 1, page 75-111
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topVisintin, Augusto. "Variational Formulation of Phase Transitions with Glass Formation." Bollettino dell'Unione Matematica Italiana 6.1 (2013): 75-111. <http://eudml.org/doc/294034>.
@article{Visintin2013,
abstract = {In the framework of the theory of nonequilibrium thermodynamics, phase transitions with glass formation in binary alloys are here modelled as a multi-non-linear system of PDEs. A weak formulation is provided for an initial- and boundary-value problem, and existence of a solution is studied. This model is then reformulated as a minimization problem, on the basis of a theory that was pioneered by Fitzpatrick [MR 1009594]. This provides a tool for the analysis of compactness and structural stability of the dependence of the solution(s) on data and operators, via De Giorgi's notion of $\gamma$-convergence. This latter issue is here dealt with in some simpler settings.},
author = {Visintin, Augusto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {75-111},
publisher = {Unione Matematica Italiana},
title = {Variational Formulation of Phase Transitions with Glass Formation},
url = {http://eudml.org/doc/294034},
volume = {6},
year = {2013},
}
TY - JOUR
AU - Visintin, Augusto
TI - Variational Formulation of Phase Transitions with Glass Formation
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/2//
PB - Unione Matematica Italiana
VL - 6
IS - 1
SP - 75
EP - 111
AB - In the framework of the theory of nonequilibrium thermodynamics, phase transitions with glass formation in binary alloys are here modelled as a multi-non-linear system of PDEs. A weak formulation is provided for an initial- and boundary-value problem, and existence of a solution is studied. This model is then reformulated as a minimization problem, on the basis of a theory that was pioneered by Fitzpatrick [MR 1009594]. This provides a tool for the analysis of compactness and structural stability of the dependence of the solution(s) on data and operators, via De Giorgi's notion of $\gamma$-convergence. This latter issue is here dealt with in some simpler settings.
LA - eng
UR - http://eudml.org/doc/294034
ER -
References
top- ALEXIADES, V. - CANNON, J. R., Free boundary problems in solidification of alloys. S.I.A.M. J. Math. Anal.11 (1980), 254-264. Zbl0436.35079MR559867DOI10.1137/0511025
- ALEXIADES, V. - SOLOMON, A. D., Mathematical Modeling of Melting and Freezing Processes. Hemisphere Publishing, Washington DC1993.
- ALEXIADES, V. - WILSON, D. G. - SOLOMON, A. D., Macroscopic global modeling of binary alloy solidification processes. Quart. Appl. Math.43 (1985), 143-158. Zbl0582.35115MR793522DOI10.1090/qam/793522
- ALT, H. W. - LUCKHAUS, S., Quasilinear elliptic-parabolic differential equations. Math. Z.183 (1983), 311-341. Zbl0497.35049MR706391DOI10.1007/BF01176474
- ANSINI, N. - DAL MASO, G. - ZEPPIERI, C. I., New results on Gamma-limits of integral functionals. Preprint SISSA, Trieste, 2012. MR3165285DOI10.1016/j.anihpc.2013.02.005
- ATTOUCH, H., Variational Convergence for Functions and Operators. Pitman, Boston1984. Zbl0561.49012MR773850
- BARBU, V., Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, Berlin2010. Zbl1197.35002MR2582280DOI10.1007/978-1-4419-5542-5
- BRAIDES, A., -Convergence for Beginners. Oxford University Press, Oxford2002. Zbl1198.49001MR1968440DOI10.1093/acprof:oso/9780198507840.001.0001
- BRAIDES, A. - DEFRANCESCHI, A., Homogenization of Multiple Integrals. Oxford University Press, Oxford1998. Zbl0911.49010MR1684713
- BREZIS, H., Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam1973. Zbl0252.47055MR348562
- BREZIS, H. - EKELAND, I., Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974, and ibid. 1197-1198. Zbl0332.49032MR637214
- BROKATE, M. - SPREKELS, J., Hysteresis and Phase Transitions. Springer, Heidelberg1996. Zbl0951.74002MR1411908DOI10.1007/978-1-4612-4048-8
- BURACHIK, R. S. - SVAITER, B. F., Maximal monotone operators, convex functions, and a special family of enlargements. Set-Valued Analysis10 (2002), 297-316. Zbl1033.47036MR1934748DOI10.1023/A:1020639314056
- BURACHIK, R. S. - SVAITER, B. F., Maximal monotonicity, conjugation and the duality product. Proc. Amer. Math. Soc.131 (2003), 2379-2383. Zbl1019.47038MR1974634DOI10.1090/S0002-9939-03-07053-9
- CALLEN, H. B., Thermodynamics and an Introduction to Thermostatistics. Wiley, New York1985. Zbl0989.80500
- CHALMERS, B., Principles of Solidification. Wiley, New York1964.
- CHIADÒ PIAT, V. - DAL MASO, G. - DEFRANCESCHI, A., G-convergence of monotone operators, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 7 (1990), 123-160. Zbl0731.35033MR1065871DOI10.1016/S0294-1449(16)30298-0
- CHRISTIAN, J. W., The Theory of Transformations in Metals and Alloys. Part 1: Equilibrium and General Kinetic Theory. Pergamon Press, London2002.
- COLLI, P. L. - VISINTIN, A., On a class of doubly nonlinear evolution problems. Communications in P.D.E.s, 15 (1990), 737-756. Zbl0707.34053MR1070845DOI10.1080/03605309908820706
- DAL MASO, G., An Introduction to -Convergence. Birkhäuser, Boston1993. Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
- DE GIORGI, E. - FRANZONI, T., Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), 842-850. MR448194
- DE GROOT, S. R., Thermodynamics of Irreversible Processes. Amsterdam, North-Holland1961. Zbl0045.27104MR43729
- DE GROOT, S. R. - MAZUR, P., Non-equilibrium Thermodynamics. Amsterdam, North-Holland1962. Zbl1375.82003MR140332
- DIBENEDETTO, E. - SHOWALTER, R. E., Implicit degenerate evolution equations and applications. S.I.A.M. J. Math. Anal.12 (1981), 731-751. Zbl0477.47037MR625829DOI10.1137/0512062
- DONNELLY, J. D. P., A model for non-equilibrium thermodynamic processes involving phase changes. J. Inst. Math. Appl.24 (1979), 425-438. Zbl0426.35060MR556152
- EKELAND, I. - TEMAM, R., Analyse Convexe et Problèmes Variationnelles. DunodGauthier-Villars, Paris1974. MR463993
- ECKART, C., The thermodynamics of irreversible processes I: The simple fluid. Physical Reviews, 58 (1940). The thermodynamics of irreversible processes II. Fluid mixtures. Physical Reviews58 (1940). Zbl66.1077.01
- ELLIOTT, C. M. - OCKENDON, J. R., Weak and Variational Methods for Moving Boundary Problems. Pitman, Boston, 1982. Zbl0476.35080MR650455
- FENCHEL, W., Convex Cones, Sets, and Functions. Princeton Univ., 1953. Zbl0053.12203
- FITZPATRICK, S., Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. Zbl0669.47029MR1009594
- FLEMINGS, M. C., Solidification Processing. McGraw-Hill, New York1973.
- FRANCFORT, G. - MURAT, F. - TARTAR, L., Homogenization of monotone operators in divergence form with -dependent multivalued graphs. Ann. Mat. Pura Appl. (4) 118 (2009), 631-652. Zbl1180.35077MR2533960DOI10.1007/s10231-009-0094-9
- FRÉMOND, M., Phase Change in Mechanics. Springer, Berlin2012.
- GHOUSSOUB, N., A variational theory for monotone vector fields. J. Fixed Point Theory Appl.4 (2008), 107-135. Zbl1177.35093MR2447965DOI10.1007/s11784-008-0083-4
- GHOUSSOUB, N., Self-Dual Partial Differential Systems and their Variational Principles. Springer, 2009. Zbl1357.49004MR2458698
- GHOUSSOUB, N. - TZOU, L., A variational principle for gradient flows. Math. Ann.330 (2004), 519-549. Zbl1062.35008MR2099192DOI10.1007/s00208-004-0558-6
- GUPTA, S. C., The Classical Stefan Problem. Basic Concepts, Modelling and Analysis. North-Holland Series. Elsevier, Amsterdam2003. MR2032973
- GURTIN, M. E., Thermomechanics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford1993. Zbl0787.73004MR1402243
- HIRIART-URRUTY, J.-B. - LEMARECHAL, C., Convex Analysis and Optimization Algorithms. Springer, Berlin1993.
- KONDEPUDI, D. - PRIGOGINE, I., Modern Thermodynamics. Wiley, New York1998.
- KURZ, W. - FISHER, D. J., Fundamentals of Solidification. Trans Tech, Aedermannsdorf1989.
- LIONS, J. L. - MAGENES, E., Non-Homogeneous Boundary Value Problems and Applications. Vols. I, II. Springer, Berlin1972 (French edition: Dunod, Paris1968). MR350177
- LUCKHAUS, S., Solidification of alloys and the Gibbs-Thomson law. Preprint, 1994.
- LUCKHAUS, S. - VISINTIN, A., Phase transition in a multicomponent system. Manuscripta Math.43 (1983), 261-288. Zbl0525.35012MR707047DOI10.1007/BF01165833
- MARTINEZ-LEGAZ, J.-E. - SVAITER, B. F., Monotone operators representable by l.s.c. convex functions. Set-Valued Anal.13 (2005), 21-46. Zbl1083.47036MR2128696DOI10.1007/s11228-004-4170-4
- MARTINEZ-LEGAZ, J.-E. - SVAITER, B. F., Minimal convex functions bounded below by the duality product. Proc. Amer. Math. Soc.136 (2008), 873-878. Zbl1133.47040MR2361859DOI10.1090/S0002-9939-07-09176-9
- MARTINEZ-LEGAZ, J.-E. - THÉRA, M., A convex representation of maximal monotone operators. J. Nonlinear Convex Anal.2 (2001), 243-247. Zbl0999.47037MR1848704
- MARQUES ALVES, M. - SVAITER, B.F., Brndsted-Rockafellar property and maximality of monotone operators representable by convex functions in non-reflexive Banach spaces. J. Convex Analysis15 (2008), 693-706. Zbl1161.47034MR2489609
- MÜLLER, I., A History of Thermodynamics. Springer, Berlin2007.
- MÜLLER, I. - WEISS, W., Entropy and Energy. A Universal Competition. Springer, Berlin2005. MR2282821
- MÜLLER, I. - WEISS, W., A history of thermodynamics of irreversible processes. (in preparation).
- NAYROLES, B., Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B282 (1976), A1035-A1038. Zbl0345.73037MR418609
- PENROSE, O. - FIFE, P.C., Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D43 (1990), 44-62. Zbl0709.76001MR1060043DOI10.1016/0167-2789(90)90015-H
- PENROSE, O. - FIFE, P.C., On the relation between the standard phase-field model and a ``thermodynamically consistent'' phase-field model. Physica D, 69 (1993), 107-113. Zbl0799.76084MR1245658DOI10.1016/0167-2789(93)90183-2
- PRIGOGINE, I., Thermodynamics of Irreversible Processes. Wiley-Interscience, New York1967. Zbl0115.23101MR135908
- ROCKAFELLAR, R. T., Convex Analysis. Princeton University Press, Princeton1969. MR274683
- STEFANELLI, U., The Brezis-Ekeland principle for doubly nonlinear equations. S.I.A.M. J. Control Optim.8 (2008), 1615-1642. Zbl1194.35214MR2425653DOI10.1137/070684574
- SOLOMON, A. D. - ALEXIADES, V. - WILSON, D. G., A numerical simulation of a binary alloy solidification process. S.I.A.M. J. Sci. Statist. Comput.6 (1985), 911-922. Zbl0588.65084MR801180DOI10.1137/0906061
- STEFAN, J., Über einige Probleme der Theorie der Wärmeleitung. Sitzungber., Wien, Akad. Mat. Natur.98 (1889), 473-484. Also ibid. pp. 614-634, 965-983, 1418-1442.
- SVAITER, B. F., Fixed points in the family of convex representations of a maximal monotone operator. Proc. Amer. Math. Soc.131 (2003), 3851-3859. Zbl1053.47046MR1999934DOI10.1090/S0002-9939-03-07083-7
- TARTAR, L., Nonlocal effects induced by homogenization. In: Partial Differential Equations and the Calculus of Variations, Vol. II (F. Colombini, A. Marino, L. Modica and S. Spagnolo, Eds.) Birkhäuser (Boston1989), 925-938. MR1034036
- TARTAR, L., Memory effects and homogenization. Arch. Rational Mech. Anal.111 (1990), 121-133. Zbl0725.45012MR1057651DOI10.1007/BF00375404
- TARTAR, L., The General Theory of Homogenization. A Personalized Introduction. Springer, Berlin; UMI, Bologna, 2009. Zbl1188.35004MR2582099DOI10.1007/978-3-642-05195-1
- TARZIA, D. A., A bibliography on moving-free boundary problems for the heat-diffusion equation. The Stefan and related problems. Universidad Austral, Departamento de Matematica, Rosario, 2000. Zbl0963.35207MR1802028
- VISINTIN, A., Models of Phase Transitions. Birkhäuser, Boston1996. Zbl0882.35004MR1423808DOI10.1007/978-1-4612-4078-5
- VISINTIN, A., Introduction to Stefan-type problems. In: Handbook of Differential Equations: Evolutionary Differential Equations vol. IV (C. Dafermos and M. Pokorny, eds.) North-Holland, Amsterdam (2008), chap. 8, 377-484. Zbl1183.35279MR1500159
- VISINTIN, A., Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl.18 (2008), 633-650. Zbl1191.47067MR2489147
- VISINTIN, A., Phase transitions and glass formation. S.I.A.M. J. Math. Anal.41 (2009), 1725-1756. Zbl1203.35055MR2564192DOI10.1137/080733607
- VISINTIN, A., Scale-transformations in the homogenization of nonlinear magnetic processes. Archive Rat. Mech. Anal.198 (2010), 569-611. Zbl1233.78043MR2721590DOI10.1007/s00205-010-0296-8
- VISINTIN, A., Structural stability of doubly nonlinear flows. Boll. Un. Mat. Ital. IV (2011), 363-391. Zbl1235.35032MR2906767
- VISINTIN, A., On the structural stability of monotone flows. Boll. Un. Mat. Ital. IV (2011), 471-479. Zbl1243.49015MR2906771
- VISINTIN, A., Structural stability of rate-independent nonpotential flows. Discrete and Continuous Dynamical Systems6 (2013), 257-275. doi:10.3934/dcdss.2013.6.257 Zbl1262.35141MR2983478DOI10.3934/dcdss.2013.6.257
- VISINTIN, A., Variational formulation and structural stability of monotone equations. Calc. Var. Partial Differential Equations (in press). Zbl1304.47073MR3044140DOI10.1007/s00526-012-0519-y
- WOODRUFF, D. P., The Solid-Liquid Interface. Cambridge Univ. Press, Cambridge1973.
- WOODS, L. C., The Thermodynamics of Fluid Systems. Clarendon Press, Oxford1975.
- ZEIDLER, E., Nonlinear functional analysis and its applications. II/B. Nonlinear monotone operators. Springer, New York1990. Zbl0684.47029MR1033498DOI10.1007/978-1-4612-0985-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.