Nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in Banach spaces

Djamila Seba

Mathematica Bohemica (2017)

  • Volume: 142, Issue: 3, page 309-321
  • ISSN: 0862-7959

Abstract

top
We consider a nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in a Banach space. The existence of at least one solution is proved by using the set-valued analog of Mönch fixed point theorem associated with the technique of measures of noncompactness.

How to cite

top

Seba, Djamila. "Nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in Banach spaces." Mathematica Bohemica 142.3 (2017): 309-321. <http://eudml.org/doc/294083>.

@article{Seba2017,
abstract = {We consider a nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in a Banach space. The existence of at least one solution is proved by using the set-valued analog of Mönch fixed point theorem associated with the technique of measures of noncompactness.},
author = {Seba, Djamila},
journal = {Mathematica Bohemica},
keywords = {differential inclusion; Caputo fractional derivative; nonlocal boundary conditions; Banach space; existence; fixed point; measure of noncompactness},
language = {eng},
number = {3},
pages = {309-321},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in Banach spaces},
url = {http://eudml.org/doc/294083},
volume = {142},
year = {2017},
}

TY - JOUR
AU - Seba, Djamila
TI - Nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in Banach spaces
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 3
SP - 309
EP - 321
AB - We consider a nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in a Banach space. The existence of at least one solution is proved by using the set-valued analog of Mönch fixed point theorem associated with the technique of measures of noncompactness.
LA - eng
KW - differential inclusion; Caputo fractional derivative; nonlocal boundary conditions; Banach space; existence; fixed point; measure of noncompactness
UR - http://eudml.org/doc/294083
ER -

References

top
  1. Agarwal, R. P., Ahmad, B., 10.1016/j.camwa.2011.03.001, Comput. Math. Appl. 62 (2011), 1200-1214. (2011) Zbl1228.34009MR2824708DOI10.1016/j.camwa.2011.03.001
  2. Agarwal, R. P., Benchohra, M., Seba, D., 10.1007/s00025-009-0434-5, Result. Math. 55 (2009), 221-230. (2009) MR2571191DOI10.1007/s00025-009-0434-5
  3. Ahmad, B., Alsaedi, A., 10.1186/1687-2770-2012-124, Bound. Value Probl. (electronic only) (2012), Article ID 124, 10 pages. (2012) Zbl1281.34004MR3017351DOI10.1186/1687-2770-2012-124
  4. Ahmad, B., Nieto, J. J., 10.1016/j.na.2007.09.018, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69 (2008), 3291-3298. (2008) Zbl1158.34049MR2450538DOI10.1016/j.na.2007.09.018
  5. Akhmerov, R. R., Kamenskiĭ, M. I., Potapov, A. S., Rodkina, A. E., Sadovskiĭ, B. N., 10.1007/978-3-0348-5727-7, Operator Theory: Advances and Applications 55. Birkhäuser, Basel (1992). (1992) Zbl0748.47045MR1153247DOI10.1007/978-3-0348-5727-7
  6. Alsaedi, A., Ntouyas, S. K., Ahmad, B., 10.1155/2013/869837, Abstr. Appl. Anal. 2013 (2013), Article ID 869837, 17 pages. (2013) Zbl1276.26008MR3049420DOI10.1155/2013/869837
  7. Alsulami, H. H., 10.2298/FIL1401091A, Filomat 28 (2014), 91-98. (2014) MR3359985DOI10.2298/FIL1401091A
  8. Balachandran, K., Park, J. Y., Trujillo, J. J., 10.1016/j.na.2011.09.042, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 1919-1926. (2012) Zbl1277.34006MR2870885DOI10.1016/j.na.2011.09.042
  9. Banaś, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics 60. Marcel Dekker, New York (1980). (1980) Zbl0441.47056MR0591679
  10. Benchohra, M., Henderson, J., Seba, D., Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal. 12 (2008), 419-427. (2008) Zbl1182.26007MR2494987
  11. Benchohra, M., Henderson, J., Seba, D., 10.7153/fdc-02-07, Fract. Differ. Calc. 2 (2012), 99-108. (2012) MR3003005DOI10.7153/fdc-02-07
  12. Benchohra, M., N'Guérékata, G. M., Seba, D., 10.4067/S0719-06462010000300003, Cubo 12 (2010), 35-48. (2010) Zbl1219.34100MR2779372DOI10.4067/S0719-06462010000300003
  13. Cui, Y., 10.1016/j.aml.2015.07.002, Appl. Math. Lett. 51 (2016), 48-54. (2016) Zbl1329.34005MR3396346DOI10.1016/j.aml.2015.07.002
  14. Guo, D., Lakshmikantham, V., Liu, X., 10.1007/978-1-4613-1281-9, Mathematics and Its Applications 373. Kluwer Academic Publishers, Dordrecht (1996). (1996) Zbl0866.45004MR1418859DOI10.1007/978-1-4613-1281-9
  15. Han, J., Liu, Y., Zhao, J., 10.1016/j.amc.2011.10.067, Appl. Math. Comput. 218 (2012), 5002-5009. (2012) Zbl1246.45006MR2870024DOI10.1016/j.amc.2011.10.067
  16. Heinz, H.-P., 10.1016/0362-546X(83)90006-8, Nonlinear Anal., Theory Methods Appl. 7 (1983), 1351-1371. (1983) Zbl0528.47046MR0726478DOI10.1016/0362-546X(83)90006-8
  17. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)x8001-5, North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)x8001-5
  18. Lakshmikantham, V., Leela, S., Devi, J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, Cambridge (2009). (2009) Zbl1188.37002
  19. Lasota, A., Opial, Z., An application of the Kakutani---Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 781-786. (1965) Zbl0151.10703MR0196178
  20. Mönch, H., 10.1016/0362-546X(80)90010-3, Nonlinear Anal., Theory Methods Appl. 4 (1980), 985-999. (1980) Zbl0462.34041MR0586861DOI10.1016/0362-546X(80)90010-3
  21. Ntouyas, S. K., 10.7151/dmdico.1146, Discuss. Math., Differ. Incl. Control Optim. 33 (2013), 17-39. (2013) Zbl1307.34016MR3136580DOI10.7151/dmdico.1146
  22. Ntouyas, S. K., Tariboon, J., Nonlocal boundary value problems for Langevin fractional differential inclusions with Riemann-Liouville fractional integral boundary conditions, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 22 (2015), 123-141. (2015) Zbl1326.34022MR3360149
  23. O'Regan, D., Precup, R., 10.1006/jmaa.2000.6789, J. Math. Anal. Appl. 245 (2000), 594-612. (2000) Zbl0956.47026MR1758558DOI10.1006/jmaa.2000.6789
  24. Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal. 5 (2002), 367-386; Correction: “Geometric and physical interpretation of fractional integration and fractional differentiation”, ibid. (2003), 109-110. (2002) Zbl1042.26003MR1967839
  25. Sabatier, J., Agrawal, O. P., (eds.), J. A. Tenreiro Machado, 10.1007/978-1-4020-6042-7, Springer, Dordrecht (2007). (2007) Zbl1116.00014MR2432163DOI10.1007/978-1-4020-6042-7
  26. Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993). (1993) Zbl0818.26003MR1347689
  27. Szufla, S., On the application of measure of noncompactness to existence theorems, Rend. Sem. Mat. Univ. Padova 75 (1986), 1-14. (1986) Zbl0589.45007MR0847653
  28. Xu, J., Wei, Z., Dong, W., 10.1016/j.aml.2011.09.065, Appl. Math. Lett. 25 (2012), 590-593. (2012) Zbl1247.34011MR2856039DOI10.1016/j.aml.2011.09.065

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.