Nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in Banach spaces
Mathematica Bohemica (2017)
- Volume: 142, Issue: 3, page 309-321
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSeba, Djamila. "Nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in Banach spaces." Mathematica Bohemica 142.3 (2017): 309-321. <http://eudml.org/doc/294083>.
@article{Seba2017,
abstract = {We consider a nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in a Banach space. The existence of at least one solution is proved by using the set-valued analog of Mönch fixed point theorem associated with the technique of measures of noncompactness.},
author = {Seba, Djamila},
journal = {Mathematica Bohemica},
keywords = {differential inclusion; Caputo fractional derivative; nonlocal boundary conditions; Banach space; existence; fixed point; measure of noncompactness},
language = {eng},
number = {3},
pages = {309-321},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in Banach spaces},
url = {http://eudml.org/doc/294083},
volume = {142},
year = {2017},
}
TY - JOUR
AU - Seba, Djamila
TI - Nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in Banach spaces
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 3
SP - 309
EP - 321
AB - We consider a nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in a Banach space. The existence of at least one solution is proved by using the set-valued analog of Mönch fixed point theorem associated with the technique of measures of noncompactness.
LA - eng
KW - differential inclusion; Caputo fractional derivative; nonlocal boundary conditions; Banach space; existence; fixed point; measure of noncompactness
UR - http://eudml.org/doc/294083
ER -
References
top- Agarwal, R. P., Ahmad, B., 10.1016/j.camwa.2011.03.001, Comput. Math. Appl. 62 (2011), 1200-1214. (2011) Zbl1228.34009MR2824708DOI10.1016/j.camwa.2011.03.001
- Agarwal, R. P., Benchohra, M., Seba, D., 10.1007/s00025-009-0434-5, Result. Math. 55 (2009), 221-230. (2009) MR2571191DOI10.1007/s00025-009-0434-5
- Ahmad, B., Alsaedi, A., 10.1186/1687-2770-2012-124, Bound. Value Probl. (electronic only) (2012), Article ID 124, 10 pages. (2012) Zbl1281.34004MR3017351DOI10.1186/1687-2770-2012-124
- Ahmad, B., Nieto, J. J., 10.1016/j.na.2007.09.018, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69 (2008), 3291-3298. (2008) Zbl1158.34049MR2450538DOI10.1016/j.na.2007.09.018
- Akhmerov, R. R., Kamenskiĭ, M. I., Potapov, A. S., Rodkina, A. E., Sadovskiĭ, B. N., 10.1007/978-3-0348-5727-7, Operator Theory: Advances and Applications 55. Birkhäuser, Basel (1992). (1992) Zbl0748.47045MR1153247DOI10.1007/978-3-0348-5727-7
- Alsaedi, A., Ntouyas, S. K., Ahmad, B., 10.1155/2013/869837, Abstr. Appl. Anal. 2013 (2013), Article ID 869837, 17 pages. (2013) Zbl1276.26008MR3049420DOI10.1155/2013/869837
- Alsulami, H. H., 10.2298/FIL1401091A, Filomat 28 (2014), 91-98. (2014) MR3359985DOI10.2298/FIL1401091A
- Balachandran, K., Park, J. Y., Trujillo, J. J., 10.1016/j.na.2011.09.042, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 1919-1926. (2012) Zbl1277.34006MR2870885DOI10.1016/j.na.2011.09.042
- Banaś, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics 60. Marcel Dekker, New York (1980). (1980) Zbl0441.47056MR0591679
- Benchohra, M., Henderson, J., Seba, D., Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal. 12 (2008), 419-427. (2008) Zbl1182.26007MR2494987
- Benchohra, M., Henderson, J., Seba, D., 10.7153/fdc-02-07, Fract. Differ. Calc. 2 (2012), 99-108. (2012) MR3003005DOI10.7153/fdc-02-07
- Benchohra, M., N'Guérékata, G. M., Seba, D., 10.4067/S0719-06462010000300003, Cubo 12 (2010), 35-48. (2010) Zbl1219.34100MR2779372DOI10.4067/S0719-06462010000300003
- Cui, Y., 10.1016/j.aml.2015.07.002, Appl. Math. Lett. 51 (2016), 48-54. (2016) Zbl1329.34005MR3396346DOI10.1016/j.aml.2015.07.002
- Guo, D., Lakshmikantham, V., Liu, X., 10.1007/978-1-4613-1281-9, Mathematics and Its Applications 373. Kluwer Academic Publishers, Dordrecht (1996). (1996) Zbl0866.45004MR1418859DOI10.1007/978-1-4613-1281-9
- Han, J., Liu, Y., Zhao, J., 10.1016/j.amc.2011.10.067, Appl. Math. Comput. 218 (2012), 5002-5009. (2012) Zbl1246.45006MR2870024DOI10.1016/j.amc.2011.10.067
- Heinz, H.-P., 10.1016/0362-546X(83)90006-8, Nonlinear Anal., Theory Methods Appl. 7 (1983), 1351-1371. (1983) Zbl0528.47046MR0726478DOI10.1016/0362-546X(83)90006-8
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)x8001-5, North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)x8001-5
- Lakshmikantham, V., Leela, S., Devi, J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, Cambridge (2009). (2009) Zbl1188.37002
- Lasota, A., Opial, Z., An application of the Kakutani---Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 781-786. (1965) Zbl0151.10703MR0196178
- Mönch, H., 10.1016/0362-546X(80)90010-3, Nonlinear Anal., Theory Methods Appl. 4 (1980), 985-999. (1980) Zbl0462.34041MR0586861DOI10.1016/0362-546X(80)90010-3
- Ntouyas, S. K., 10.7151/dmdico.1146, Discuss. Math., Differ. Incl. Control Optim. 33 (2013), 17-39. (2013) Zbl1307.34016MR3136580DOI10.7151/dmdico.1146
- Ntouyas, S. K., Tariboon, J., Nonlocal boundary value problems for Langevin fractional differential inclusions with Riemann-Liouville fractional integral boundary conditions, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 22 (2015), 123-141. (2015) Zbl1326.34022MR3360149
- O'Regan, D., Precup, R., 10.1006/jmaa.2000.6789, J. Math. Anal. Appl. 245 (2000), 594-612. (2000) Zbl0956.47026MR1758558DOI10.1006/jmaa.2000.6789
- Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal. 5 (2002), 367-386; Correction: “Geometric and physical interpretation of fractional integration and fractional differentiation”, ibid. (2003), 109-110. (2002) Zbl1042.26003MR1967839
- Sabatier, J., Agrawal, O. P., (eds.), J. A. Tenreiro Machado, 10.1007/978-1-4020-6042-7, Springer, Dordrecht (2007). (2007) Zbl1116.00014MR2432163DOI10.1007/978-1-4020-6042-7
- Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993). (1993) Zbl0818.26003MR1347689
- Szufla, S., On the application of measure of noncompactness to existence theorems, Rend. Sem. Mat. Univ. Padova 75 (1986), 1-14. (1986) Zbl0589.45007MR0847653
- Xu, J., Wei, Z., Dong, W., 10.1016/j.aml.2011.09.065, Appl. Math. Lett. 25 (2012), 590-593. (2012) Zbl1247.34011MR2856039DOI10.1016/j.aml.2011.09.065
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.