On the application of measure of noncompactness to existence theorems
Rendiconti del Seminario Matematico della Università di Padova (1986)
- Volume: 75, page 1-14
- ISSN: 0041-8994
Access Full Article
topHow to cite
topSzufla, Stanisław. "On the application of measure of noncompactness to existence theorems." Rendiconti del Seminario Matematico della Università di Padova 75 (1986): 1-14. <http://eudml.org/doc/108021>.
@article{Szufla1986,
author = {Szufla, Stanisław},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {measure of noncompactness; Hammerstein; quasilinear evolution equations; Banach space; continuous solution},
language = {eng},
pages = {1-14},
publisher = {Seminario Matematico of the University of Padua},
title = {On the application of measure of noncompactness to existence theorems},
url = {http://eudml.org/doc/108021},
volume = {75},
year = {1986},
}
TY - JOUR
AU - Szufla, Stanisław
TI - On the application of measure of noncompactness to existence theorems
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1986
PB - Seminario Matematico of the University of Padua
VL - 75
SP - 1
EP - 14
LA - eng
KW - measure of noncompactness; Hammerstein; quasilinear evolution equations; Banach space; continuous solution
UR - http://eudml.org/doc/108021
ER -
References
top- [1] A. Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Semin. Mat. Univ. Padova, 39 (1967), pp. 349-360. Zbl0174.46001MR222426
- [2] F. Browder, Nonlinear equations of evolution, Ann. of Math., 80 (1964), pp. 485-523. Zbl0127.33602MR173960
- [3] F. Browder, Nonlinear operators and nonlinear equations of evolution, Proc. Symp. Nonlin. Funct. Anal. Chicago, AMS, 20 II, Providence, R. I., 1972.
- [4] A. Cellina, On the existence of solutions of ordinary differential equations in Banach spaces, Funkcial. Ekvac., 14 (1971), pp. 129-136. Zbl0271.34071MR304805
- [5] J. Chandra - V. LAKSHMIKANTHAM - A. MITCHELL, Existence of solutions of boundary value problems for nonlinear second order systems in a Banach space, J. Nonlinear Anal., 2 (1978), pp. 157-168. Zbl0385.34035MR512279
- [6] J. Daneš, On densifying and related mappings and their applications in nonlinear functional analysis, Theory of nonlinear operators, Akademie-Verlag, Berlin (1974), pp. 15-56. Zbl0295.47058MR361946
- [7] G. Darbo, Punti uniti in trasformazioni a condominio non compatto, Rend. Sem. Mat. Univ. Padova, 24 (1955), pp. 84-92. Zbl0064.35704MR70164
- [8] K. Deimling, Ordinary differential equations in Banach spaces, Lecture Notes Math. no. 596, Berlin, Heidelberg, New York, 1977. Zbl0361.34050MR463601
- [9] K. Goebel - W. Rzymowski, An existence theorem for the equation x' = f (t, x) in Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 18 (1970), pp. 367-370. Zbl0202.10003MR269957
- [10] P. Hartman, Ordinary differential equations, New York, London, Sydney, 1964. Zbl0125.32102MR171038
- [11] A. Koschelev - M. Krasnoselskii - S. Michlin - L. Rakovschik- V. Stecenko - P. Zabreiko, Integral equations, SMB, Moskva, 1968.
- [12] K. Kuratowski, Topologie, Warszawa, 1958. Zbl0078.14603
- [13] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, J. Nonlinear Anal., 4 (1980), pp. 985-999. Zbl0462.34041MR586861
- [14] G. Pianigiani, Existence of solutions of ordinary differential equations in Banach spaces, Bull. Acad. Pelon. Sci. Sér. Sci. Math. Astronom. Phys., 23 (1975), pp. 853-857. Zbl0317.34050MR393710
- [15] J Prüß, On semilinear evolution equations in Banach spaces, J. Reine Angew Math., 303-304 (1978), pp. 144-158. Zbl0398.34057MR514677
- [16] B. Sadovskii, On a fixed point principle, Frunkcjcnalnyj Analiz., 1 (1976), pp. 74-76. Zbl0165.49102MR211302
- [17] G. Scorza-Dragoni, Sul problema dei valori ai limiti per i sistemi di equazioni differenziali del secondo ordine, Bcll. U.M.I., 14 (1935), pp. 225-230. Zbl61.1238.08JFM61.1238.08
- [18] S. Szufla, Some remarks on ordinary differential equations in Banach spaces, Bull. Acad. Pclon. Sci. Sθr. Sci. Math. Astronom. Phys., 16 (1968), pp. 795-800. Zbl0177.18902
- [19] S. Szufla, Równania różniczkowe w przestrzeniach Banacha, Ph. D. Thesis, Poznań, 1972.
- [20] S. Szufla, On the existence of solutions of differential equations in Banach spaces, Bull. Acad. Polon. Sci. Math., 30 (1982), pp. 507-515. Zbl0532.34045MR718727
- [21] S. Szufla, On Volterra integral equations in Banach spaces, Funkcial. Ekvac., 20 (1977), pp. 247-258. Zbl0379.45025MR511230
Citations in EuDML Documents
top- Mieczysław Cichoń, Ireneusz Kubiaczyk, Existence theorem for the Hammerstein integral equation
- Djamila Seba, Nonlinear fractional differential inclusion with nonlocal fractional integro-differential boundary conditions in Banach spaces
- Dariusz Bugajewski, On the existence of weak solutions of integral equations in Banach spaces
- Dariusz Bugajewski, On fixed point theorems for absolute retracts
- Afif Ben Amar, Some fixed point theorems and existence of weak solutions of Volterra integral equation under Henstock-Kurzweil-Pettis integrability
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.