Generalized Higher Derivations on Lie Ideals of Triangular Algebras
Mohammad Ashraf; Nazia Parveen; Bilal Ahmad Wani
Communications in Mathematics (2017)
- Volume: 25, Issue: 1, page 35-53
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topAshraf, Mohammad, Parveen, Nazia, and Wani, Bilal Ahmad. "Generalized Higher Derivations on Lie Ideals of Triangular Algebras." Communications in Mathematics 25.1 (2017): 35-53. <http://eudml.org/doc/294132>.
@article{Ashraf2017,
abstract = {Let $\mathfrak \{A\} = \begin\{pmatrix\}\mathcal \{A\} & \mathcal \{M\}\\ &\mathcal \{B\} \end\{pmatrix\}$ be the triangular algebra consisting of unital algebras $\mathcal \{A\}$ and $\mathcal \{B\}$ over a commutative ring $R$ with identity $1$ and $ \mathcal \{M\}$ be a unital $ \mathcal \{(A, B)\}$-bimodule. An additive subgroup $ \mathfrak \{ L \}$ of $ \mathfrak \{ A \} $ is said to be a Lie ideal of $\mathfrak \{A\}$ if $[\mathfrak \{L\},\mathfrak \{A\}]\subseteq \mathfrak \{L\}$. A non-central square closed Lie ideal $\mathfrak \{ L \}$ of $\mathfrak \{ A \}$ is known as an admissible Lie ideal. The main result of the present paper states that under certain restrictions on $\mathfrak \{A\}$, every generalized Jordan triple higher derivation of $ \mathfrak \{L\}$ into $\mathfrak \{A\}$ is a generalized higher derivation of $ \mathfrak \{L\}$ into $ \mathfrak \{ A \}$.},
author = {Ashraf, Mohammad, Parveen, Nazia, Wani, Bilal Ahmad},
journal = {Communications in Mathematics},
keywords = {Admissible Lie Ideals; triangular algebra; generalized higher derivation; generalized Jordan higher derivation; generalized Jordan triple higher derivation},
language = {eng},
number = {1},
pages = {35-53},
publisher = {University of Ostrava},
title = {Generalized Higher Derivations on Lie Ideals of Triangular Algebras},
url = {http://eudml.org/doc/294132},
volume = {25},
year = {2017},
}
TY - JOUR
AU - Ashraf, Mohammad
AU - Parveen, Nazia
AU - Wani, Bilal Ahmad
TI - Generalized Higher Derivations on Lie Ideals of Triangular Algebras
JO - Communications in Mathematics
PY - 2017
PB - University of Ostrava
VL - 25
IS - 1
SP - 35
EP - 53
AB - Let $\mathfrak {A} = \begin{pmatrix}\mathcal {A} & \mathcal {M}\\ &\mathcal {B} \end{pmatrix}$ be the triangular algebra consisting of unital algebras $\mathcal {A}$ and $\mathcal {B}$ over a commutative ring $R$ with identity $1$ and $ \mathcal {M}$ be a unital $ \mathcal {(A, B)}$-bimodule. An additive subgroup $ \mathfrak { L }$ of $ \mathfrak { A } $ is said to be a Lie ideal of $\mathfrak {A}$ if $[\mathfrak {L},\mathfrak {A}]\subseteq \mathfrak {L}$. A non-central square closed Lie ideal $\mathfrak { L }$ of $\mathfrak { A }$ is known as an admissible Lie ideal. The main result of the present paper states that under certain restrictions on $\mathfrak {A}$, every generalized Jordan triple higher derivation of $ \mathfrak {L}$ into $\mathfrak {A}$ is a generalized higher derivation of $ \mathfrak {L}$ into $ \mathfrak { A }$.
LA - eng
KW - Admissible Lie Ideals; triangular algebra; generalized higher derivation; generalized Jordan higher derivation; generalized Jordan triple higher derivation
UR - http://eudml.org/doc/294132
ER -
References
top- Ashraf, M., Khan, A., Haetinger, C., On -higher derivations in prime rings, Int. Electron. J. Math., 8, 1, 2010, 65-79, (2010) Zbl1253.16039MR2660541
- Ashraf, M., Khan, A., On generalized -higher derivations in prime rings, SpringerPlus, 38, 2012, (2012) MR3166542
- Awtar, R., 10.1090/S0002-9939-1984-0722405-2, Proc. Amer. Math. Soc., 90, 1, 1984, 9-14, (1984) Zbl0528.16020MR0722405DOI10.1090/S0002-9939-1984-0722405-2
- Bergen, J., Herstein, I. N., Kerr, J. W., 10.1016/0021-8693(81)90120-4, J. Algebra, 71, 1981, 259-267, (1981) Zbl0463.16023MR0627439DOI10.1016/0021-8693(81)90120-4
- Brešar, M., 10.1017/S0017089500008077, Glasgow Math. J., 33, 1991, 89-93, (1991) Zbl0731.47037MR1089958DOI10.1017/S0017089500008077
- Chase, S. U., 10.1017/S0027763000002208, Nagoya Math. J., 18, 1961, 13-25, (1961) Zbl0113.02901MR0123594DOI10.1017/S0027763000002208
- Cortes, W., Haetinger, C., On Jordan generalized higher derivations in rings, Turkish J. Math., 29, 1, 2005, 1-10, (2005) Zbl1069.16039MR2118947
- Ferrero, M., Haetinger, C., 10.2989/16073600209486012, Quaest. Math., 25, 2, 2002, 249-257, (2002) Zbl1009.16036MR1916335DOI10.2989/16073600209486012
- Ferrero, M., Haetinger, C., 10.1081/AGB-120003471, Comm. Algebra, 30, 5, 2002, 2321-2333, (2002) Zbl1010.16028MR1904640DOI10.1081/AGB-120003471
- Haetinger, C., 10.5540/tema.2002.03.01.0141, Tend. Mat. Apl. Comput., 3, 1, 2002, 141-145, (2002) MR2001254DOI10.5540/tema.2002.03.01.0141
- Haetinger, C., Ashraf, M., Ali, S., On Higher derivations: a survey, Int. J. Math. Game Theory Algebra, 19, 5/6, 2011, 359-379, (2011) Zbl1234.16030MR2814896
- Han, D., 10.1134/S0037446612060079, Sib. Math. J., 53, 6, 2012, 1029-1036, (2012) Zbl1261.16043MR3074440DOI10.1134/S0037446612060079
- Hasse, F., Schmidt, F. K., Noch eine Begründung der Theorie der höheren DiKerentialquotienten einem algebraischen Funktionenköroer einer Unbestimmten, J. reine angew. Math., 177, 1937, 215-237, (1937) MR1581570
- Jing, W., Lu, S., 10.11650/twjm/1500407580, Taiwanese J. Math., 7, 4, 2003, 605-613, (2003) Zbl1058.16031MR2017914DOI10.11650/twjm/1500407580
- Jung, Y. S., Generalized Jordan triple higher derivations on prime rings, Indian J. Pure Appl. Math., 36, 9, 2005, 513-524, (2005) Zbl1094.16023MR2210246
- Lanski, C., Montgomery, S., 10.2140/pjm.1972.42.117, Pacific J. Math., 42, 1972, 117-136, (1972) MR0323839DOI10.2140/pjm.1972.42.117
- Nakajima, A., On generalized higher derivations, Turk. J. Math., 24, 3, 2000, 295-311, (2000) Zbl0979.16022MR1797528
- Xiao, Z. H., Wei, F., 10.1016/j.laa.2009.12.006, Linear Algebra Appl., 432, 2010, 2615-2622, (2010) Zbl1185.47034MR2608180DOI10.1016/j.laa.2009.12.006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.