Displaying similar documents to “Generalized Higher Derivations on Lie Ideals of Triangular Algebras”

Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings

Vincenzo de Filippis (2016)

Czechoslovak Mathematical Journal

Similarity:

Let R be a prime ring of characteristic different from 2 and 3, Q r its right Martindale quotient ring, C its extended centroid, L a non-central Lie ideal of R and n 1 a fixed positive integer. Let α be an automorphism of the ring R . An additive map D : R R is called an α -derivation (or a skew derivation) on R if D ( x y ) = D ( x ) y + α ( x ) D ( y ) for all x , y R . An additive mapping F : R R is called a generalized α -derivation (or a generalized skew derivation) on R if there exists a skew derivation D on R such that F ( x y ) = F ( x ) y + α ( x ) D ( y ) for all x , y R . We prove...

Multiplicative Lie triple derivations on standard operator algebras

Bilal Ahmad Wani (2021)

Communications in Mathematics

Similarity:

Let 𝒳 be a Banach space of dimension n > 1 and 𝔄 ( 𝒳 ) be a standard operator algebra. In the present paper it is shown that if a mapping d : 𝔄 𝔄 (not necessarily linear) satisfies d ( [ [ U , V ] , W ] ) = [ [ d ( U ) , V ] , W ] + [ [ U , d ( V ) ] , W ] + [ [ U , V ] , d ( W ) ] for all U , V , W 𝔄 , then d = ψ + τ , where ψ is an additive derivation of 𝔄 and τ : 𝔄 𝔽 I vanishes at second commutator [ [ U , V ] , W ] for all U , V , W 𝔄 . Moreover, if d is linear and satisfies the above relation, then there exists an operator S 𝔄 and a linear mapping τ from 𝔄 into 𝔽 I satisfying τ ( [ [ U , V ] , W ] ) = 0 for all U , V , W 𝔄 , such that d ( U ) = S U - U S + τ ( U ) for all U 𝔄 .

( φ , ϕ ) -derivations on semiprime rings and Banach algebras

Bilal Ahmad Wani (2021)

Communications in Mathematics

Similarity:

Let be a semiprime ring with unity e and φ , ϕ be automorphisms of . In this paper it is shown that if satisfies 2 𝒟 ( x n ) = 𝒟 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) 𝒟 ( x ) + 𝒟 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒟 ( x n - 1 ) for all x and some fixed integer n 2 , then 𝒟 is an ( φ , ϕ )-derivation. Moreover, this result makes it possible to prove that if admits an additive mappings 𝒟 , 𝒢 : satisfying the relations 2 𝒟 ( x n ) = 𝒟 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) 𝒢 ( x ) + 𝒢 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒢 ( x n - 1 ) , 2 𝒢 ( x n ) = 𝒢 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) 𝒟 ( x ) + 𝒟 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒟 ( x n - 1 ) , for all x and some fixed integer n 2 , then 𝒟 and 𝒢 are ( φ , ϕ )derivations under some torsion restriction. Finally, we apply these purely ring theoretic results to semi-simple Banach algebras. ...

On the characterization of certain additive maps in prime * -rings

Mohammad Ashraf, Mohammad Aslam Siddeeque, Abbas Hussain Shikeh (2024)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒜 be a noncommutative prime ring equipped with an involution ‘ * ’, and let 𝒬 m s ( 𝒜 ) be the maximal symmetric ring of quotients of 𝒜 . Consider the additive maps and 𝒯 : 𝒜 𝒬 m s ( 𝒜 ) . We prove the following under some inevitable torsion restrictions. (a) If m and n are fixed positive integers such that ( m + n ) 𝒯 ( a 2 ) = m 𝒯 ( a ) a * + n a 𝒯 ( a ) for all a 𝒜 and ( m + n ) ( a 2 ) = m ( a ) a * + n a 𝒯 ( a ) for all a 𝒜 , then = 0 . (b) If 𝒯 ( a b a ) = a 𝒯 ( b ) a * for all a , b 𝒜 , then 𝒯 = 0 . Furthermore, we characterize Jordan left τ -centralizers in semiprime rings admitting an anti-automorphism τ . As applications, we find the...

Enveloping algebras of Slodowy slices and the Joseph ideal

Alexander Premet (2007)

Journal of the European Mathematical Society

Similarity:

Let G be a simple algebraic group over an algebraically closed field 𝕜 of characteristic 0, and 𝔤 = Lie G . Let ( e , h , f ) be an 𝔰 𝔩 2 -triple in 𝔤 with e being a long root vector in 𝔤 . Let ( · , · ) be the G -invariant bilinear form on 𝔤 with ( e , f ) = 1 and let χ 𝔤 * be such that χ ( x ) = ( e , x ) for all x 𝔤 . Let 𝒮 be the Slodowy slice at e through the adjoint orbit of e and let H be the enveloping algebra of 𝒮 ; see [31]. In this article we give an explicit presentation of H by generators and relations. As a consequence we deduce that H contains...

Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions

G. Letac, J. Wesołowski (2011)

Bulletin de la Société Mathématique de France

Similarity:

If the space 𝒬 of quadratic forms in n is splitted in a direct sum 𝒬 1 ... 𝒬 k and if X and Y are independent random variables of n , assume that there exist a real number a such that E ( X | X + Y ) = a ( X + Y ) and real distinct numbers b 1 , . . . , b k such that E ( q ( X ) | X + Y ) = b i q ( X + Y ) for any q in 𝒬 i . We prove that this happens only when k = 2 , when n can be structured in a Euclidean Jordan algebra and when X and Y have Wishart distributions corresponding to this structure.

A note on the multiplier ideals of monomial ideals

Cheng Gong, Zhongming Tang (2015)

Czechoslovak Mathematical Journal

Similarity:

Let 𝔞 [ x 1 , ... , x n ] be a monomial ideal and 𝒥 ( 𝔞 c ) the multiplier ideal of 𝔞 with coefficient c . Then 𝒥 ( 𝔞 c ) is also a monomial ideal of [ x 1 , ... , x n ] , and the equality 𝒥 ( 𝔞 c ) = 𝔞 implies that 0 < c < n + 1 . We mainly discuss the problem when 𝒥 ( 𝔞 ) = 𝔞 or 𝒥 ( 𝔞 n + 1 - ε ) = 𝔞 for all 0 < ε < 1 . It is proved that if 𝒥 ( 𝔞 ) = 𝔞 then 𝔞 is principal, and if 𝒥 ( 𝔞 n + 1 - ε ) = 𝔞 holds for all 0 < ε < 1 then 𝔞 = ( x 1 , ... , x n ) . One global result is also obtained. Let 𝔞 ˜ be the ideal sheaf on n - 1 associated with 𝔞 . Then it is proved that the equality 𝒥 ( 𝔞 ˜ ) = 𝔞 ˜ implies that 𝔞 ˜ is principal.

Centralizing traces and Lie-type isomorphisms on generalized matrix algebras: a new perspective

Xinfeng Liang, Feng Wei, Ajda Fošner (2019)

Czechoslovak Mathematical Journal

Similarity:

Let be a commutative ring, 𝒢 be a generalized matrix algebra over with weakly loyal bimodule and 𝒵 ( 𝒢 ) be the center of 𝒢 . Suppose that 𝔮 : 𝒢 × 𝒢 𝒢 is an -bilinear mapping and that 𝔗 𝔮 : 𝒢 𝒢 is a trace of 𝔮 . The aim of this article is to describe the form of 𝔗 𝔮 satisfying the centralizing condition [ 𝔗 𝔮 ( x ) , x ] 𝒵 ( 𝒢 ) (and commuting condition [ 𝔗 𝔮 ( x ) , x ] = 0 ) for all x 𝒢 . More precisely, we will revisit the question of when the centralizing trace (and commuting trace) 𝔗 𝔮 has the so-called proper form from a new perspective. Using the aforementioned...

Generalized reverse derivations and commutativity of prime rings

Shuliang Huang (2019)

Communications in Mathematics

Similarity:

Let R be a prime ring with center Z ( R ) and I a nonzero right ideal of R . Suppose that R admits a generalized reverse derivation ( F , d ) such that d ( Z ( R ) ) 0 . In the present paper, we shall prove that if one of the following conditions holds: (i) F ( x y ) ± x y Z ( R ) , (ii) F ( [ x , y ] ) ± [ F ( x ) , y ] Z ( R ) , (iii) F ( [ x , y ] ) ± [ F ( x ) , F ( y ) ] Z ( R ) , (iv) F ( x y ) ± F ( x ) F ( y ) Z ( R ) , (v) [ F ( x ) , y ] ± [ x , F ( y ) ] Z ( R ) , (vi) F ( x ) y ± x F ( y ) Z ( R ) for all x , y I , then R is commutative.

Augmentation quotients for Burnside rings of generalized dihedral groups

Shan Chang (2016)

Czechoslovak Mathematical Journal

Similarity:

Let H be a finite abelian group of odd order, 𝒟 be its generalized dihedral group, i.e., the semidirect product of C 2 acting on H by inverting elements, where C 2 is the cyclic group of order two. Let Ω ( 𝒟 ) be the Burnside ring of 𝒟 , Δ ( 𝒟 ) be the augmentation ideal of Ω ( 𝒟 ) . Denote by Δ n ( 𝒟 ) and Q n ( 𝒟 ) the n th power of Δ ( 𝒟 ) and the n th consecutive quotient group Δ n ( 𝒟 ) / Δ n + 1 ( 𝒟 ) , respectively. This paper provides an explicit -basis for Δ n ( 𝒟 ) and determines the isomorphism class of Q n ( 𝒟 ) for each positive integer n .