Plimpton 322 — A Breakthrough Discovery?

Martina Bečvářová; Jiří Veselý

Pokroky matematiky, fyziky a astronomie (2017)

  • Volume: 62, Issue: 4, page 254-263
  • ISSN: 0032-2423

Abstract

top
Článek pojednává o matematicky velmi zajímavé mezopotámské hliněné tabulce známé pod názvem Plimpton 322, která ukazuje vyspělost tehdejších matematických znalostí a která je v současné době zdrojem zajímavých spekulací.

How to cite

top

Bečvářová, Martina, and Veselý, Jiří. "Plimpton 322 — přelomový objev?." Pokroky matematiky, fyziky a astronomie 62.4 (2017): 254-263. <http://eudml.org/doc/294228>.

@article{Bečvářová2017,
abstract = {Článek pojednává o matematicky velmi zajímavé mezopotámské hliněné tabulce známé pod názvem Plimpton 322, která ukazuje vyspělost tehdejších matematických znalostí a která je v současné době zdrojem zajímavých spekulací.},
author = {Bečvářová, Martina, Veselý, Jiří},
journal = {Pokroky matematiky, fyziky a astronomie},
language = {cze},
number = {4},
pages = {254-263},
publisher = {Jednota českých matematiků a fyziků},
title = {Plimpton 322 — přelomový objev?},
url = {http://eudml.org/doc/294228},
volume = {62},
year = {2017},
}

TY - JOUR
AU - Bečvářová, Martina
AU - Veselý, Jiří
TI - Plimpton 322 — přelomový objev?
JO - Pokroky matematiky, fyziky a astronomie
PY - 2017
PB - Jednota českých matematiků a fyziků
VL - 62
IS - 4
SP - 254
EP - 263
AB - Článek pojednává o matematicky velmi zajímavé mezopotámské hliněné tabulce známé pod názvem Plimpton 322, která ukazuje vyspělost tehdejších matematických znalostí a která je v současné době zdrojem zajímavých spekulací.
LA - cze
UR - http://eudml.org/doc/294228
ER -

References

top
  1. Aaboe, A., Episodes from the early history of mathematics, . New Mathematical Library 13. Mathematical Association of America, Washington, 1964. (1964) Zbl0129.24703MR0159739
  2. Abdulaziz, A. A., The Plimpton 322 tablet and the Babylonian method of generating Pythagorean triples, . arXiv:1004.0025v1 [math.HO], 1–34. 
  3. Bečvářová, M., Matematika ve staré Mezopotámii, . In: Bečvář, J., Bečvářová, M., Vymazalová, H. (Eds): Matematika ve starověku. Egypt a Mezopotámie. Dějiny matematiky 23. Prometheus, Praha, 2003. (2003) MR2109719
  4. Britton, J. P., Proust, Ch., Shnider, S., 10.1007/s00407-011-0083-4, . Arch. Hist. Exact Sci. 5 (2011), 519–566. (2011) Zbl1228.01002MR2838357DOI10.1007/s00407-011-0083-4
  5. Creighton, B. R., Sherlock Holmes in Babylon, . Amer. Math. Monthly 87 (1980), 338–345. (1980) Zbl0435.01001
  6. Hajossy, R., Plimpton 322: A universal cuneiform table for old Babylonian mathematicians, builders, surveyors and teachers, . Tatra Mt. Math. Publ. 67 (2016), 1–40. (2016) MR3632499
  7. Joyce, D. E., Plimpton 322 Tablet, . Clark University, 1995 [online], [cit. 20. 10. 2017]. Dostupné z: http://aleph0.clarku.edu/~djoyce/mathhist/plimpnote.html (1995) 
  8. Kennedy, M., Mathematical secrets of ancient tablet unlocked after nearly a century of study, . The Guardian, 2017 [online], [cit. 20. 10. 2017]. Dostupné z: https://www.theguardian.com/science/2017/aug/24/mathematical-secrets-of- ancient-tablet-unlocked-after-nearly-a-century-of-study (2017) 
  9. Kline, M., Mathematical thoughts from ancient to modern times, . Oxford University Press, New York, 1990 (první vydání 1972). (1990) MR0472307
  10. Knapton, S., 3,700-year-old Babylonian tablet rewrites the history of maths – and shows the Greeks did not develop trigonometry, . The Telegraph, 2017 [online], [cit. 20. 10. 2017]. Dostupné z: http://www.telegraph.co.uk/science/2017/08/24/3700-year-old-babylonian-tablet-rewrites-history-maths-could/ (2017) 
  11. Knuth, D. E., 10.1145/361454.361514, . Comm. ACM 15 (1972), 671–677. (1972) Zbl0245.68010MR0392315DOI10.1145/361454.361514
  12. Lamb, E., Don’t fall for Babylonian trigonometry hype. Separating fact from speculation in math history, . Scientific American, 2017 [online], [cit. 20. 10. 2017]. Dostupné z: https://blogs.scientificamerican.com/roots-of-unity/dont-fall-for- babylonian-trigonometry-hype/ (2017) 
  13. Mansfield, D. F., Ancient Babylonian tablet – world’s first trig table, . UNSWTV 2017, YouTube [online], [cit. 20. 10. 2017]. Dostupné z: https://www.youtube.com/watch?v=i9-ZPGp1AJE 
  14. Mansfield, D. F., Wildberger, N. J., 10.1016/j.hm.2017.08.001, . Hist. Math. 44 (2017), 395–419. (2017) MR3716328DOI10.1016/j.hm.2017.08.001
  15. Česká televize, Matematici odhalili záhadu babylonské hliněné destičky. Obsahovala první popis trigonometrie, [online], [cit. 20. 10. 2017]. Dostupné z: http://www.ceskatelevize.cz/ct24/veda/2223535-matematici-odhalili-zahadu-babylonske-hlinene-desticky-obsahovala-prvni-popis 
  16. Neugebauer, O., Mathematische Keilschrift-Texte, . Verlag von Julius Springer, Berlin, 1935 (erster und zweiter Teil), 1937 (dritter Teil) (reprint Springer-Verlag, Berlin, 1973). (1973) Zbl0255.01001MR0465671
  17. Neugebauer, O., Sachs, A., Mathematical cuneiform texts, . American Oriental Society and the American Schools of Oriental Research, New Haven, 1945 (reprint American Oriental Society, New Haven, 1986). (1945) Zbl0060.00401MR0016320
  18. Robson, E., 10.1006/hmat.2001.2317, . Historia Math. 28 (2001), 167–206. (2001) Zbl0991.01001MR1849797DOI10.1006/hmat.2001.2317
  19. Robson, E., Words and pictures: new light on Plimpton 322, (2002) Zbl1030.01005
  20. Thureau-Dangin, F., Le théorème de Pythagore. (Notes Assyriologigues LXVIII.), Revue d’Assyriologie et d’Archéologie Orientale 29 (1932), 131–142. (1932) 
  21. Wildberger, N. J., Old Babylonian mathematics and Plimpton 322: A new understanding of the OB tablet Plimpton 322, . YouTube [online], [cit. 20. 10. 2017]. Dostupné z: https://www.youtube.com/watch?v=L24GzTaOll0 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.