Inverse scattering via nonlinear integral equations method for a sound-soft crack with phaseless data
Peng Gao; Heping Dong; Fuming Ma
Applications of Mathematics (2018)
- Volume: 63, Issue: 2, page 149-165
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topGao, Peng, Dong, Heping, and Ma, Fuming. "Inverse scattering via nonlinear integral equations method for a sound-soft crack with phaseless data." Applications of Mathematics 63.2 (2018): 149-165. <http://eudml.org/doc/294238>.
@article{Gao2018,
abstract = {We consider the inverse scattering of time-harmonic plane waves to reconstruct the shape of a sound-soft crack from a knowledge of the given incident field and the phaseless data, and we check the invariance of far field data with respect to translation of the crack. We present a numerical method that is based on a system of nonlinear and ill-posed integral equations, and our scheme is easy and simple to implement. The numerical implementation is described and numerical examples are presented to illustrate the feasibility of the proposed method.},
author = {Gao, Peng, Dong, Heping, Ma, Fuming},
journal = {Applications of Mathematics},
keywords = {inverse scattering problem; Helmholtz equation; crack; phaseless; translation invariance},
language = {eng},
number = {2},
pages = {149-165},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inverse scattering via nonlinear integral equations method for a sound-soft crack with phaseless data},
url = {http://eudml.org/doc/294238},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Gao, Peng
AU - Dong, Heping
AU - Ma, Fuming
TI - Inverse scattering via nonlinear integral equations method for a sound-soft crack with phaseless data
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 149
EP - 165
AB - We consider the inverse scattering of time-harmonic plane waves to reconstruct the shape of a sound-soft crack from a knowledge of the given incident field and the phaseless data, and we check the invariance of far field data with respect to translation of the crack. We present a numerical method that is based on a system of nonlinear and ill-posed integral equations, and our scheme is easy and simple to implement. The numerical implementation is described and numerical examples are presented to illustrate the feasibility of the proposed method.
LA - eng
KW - inverse scattering problem; Helmholtz equation; crack; phaseless; translation invariance
UR - http://eudml.org/doc/294238
ER -
References
top- Ammari, H., Chow, Y. T., Zou, J., 10.1137/15M1043959, SIAM J. Appl. Math. 76 (2016), 1000-1030. (2016) Zbl1338.35490MR3505314DOI10.1137/15M1043959
- Bao, G., Zhang, L., 10.1088/0266-5611/32/8/085002, Inverse Probl. 32 (2016), Article ID 085002, 16 pages. (2016) Zbl1351.65083MR3535661DOI10.1088/0266-5611/32/8/085002
- Colton, D., Kress, R., 10.1007/978-1-4614-4942-3, Applied Mathematical Sciences 93, Springer, New York (2013). (2013) Zbl1266.35121MR2986407DOI10.1007/978-1-4614-4942-3
- Ivanyshyn, O., 10.3934/ipi.2007.1.609, Inverse Probl. Imaging 1 (2007), 609-622. (2007) Zbl1194.35502MR2350217DOI10.3934/ipi.2007.1.609
- Ivanyshyn, O., Johansson, T., 10.1216/jiea/1190905488, J. Integral Equations Appl. 19 (2007), 289-308. (2007) Zbl1135.65392MR2363789DOI10.1216/jiea/1190905488
- Ivanyshyn, O., Kress, R., 10.1002/mma.970, Math. Methods Appl. Sci. 31 (2008), 1221-1232. (2008) Zbl1153.65367MR2426204DOI10.1002/mma.970
- Ivanyshyn, O., Kress, R., 10.3934/ipi.2010.4.131, Inverse Probl. Imaging 4 (2010), 131-149. (2010) Zbl1220.35194MR2592786DOI10.3934/ipi.2010.4.131
- Johansson, T., Sleeman, B. D., 10.1093/imamat/hxl026, IMA J. Appl. Math. 72 (2007), 96-112. (2007) Zbl1121.76059MR2309563DOI10.1093/imamat/hxl026
- Karageorghis, A., Johansson, B. T., Lesnic, D., 10.1016/j.apnum.2012.05.011, Appl. Numer. Math. 62 (2012), 1767-1780. (2012) Zbl1255.65203MR2980733DOI10.1016/j.apnum.2012.05.011
- Kirsch, A., Ritter, S., 10.1088/0266-5611/16/1/308, Inverse Probl. 16 (2000), 89-105. (2000) Zbl0968.35129MR1741229DOI10.1088/0266-5611/16/1/308
- Kress, R., 10.1515/jiip.1995.3.4.305, J. Inverse Ill-Posed Probl. 3 (1995), 305-313. (1995) Zbl0846.35146MR1366555DOI10.1515/jiip.1995.3.4.305
- Kress, R., 10.1002/mma.1670180403, Math. Methods Appl. Sci. 18 (1995), 267-293. (1995) Zbl0824.35030MR1319999DOI10.1002/mma.1670180403
- Kress, R., Rundell, W., 10.1007/978-3-7091-6521-8_7, Inverse Problems in Medical Imaging and Nondestructive Testing H. W. Engl et al. Springer, Wien (1997), 75-92. (1997) Zbl0880.65105MR1603907DOI10.1007/978-3-7091-6521-8_7
- Kress, R., Serranho, P., 10.1088/0266-5611/21/2/020, Inverse Probl. 21 (2005), 773-784. (2005) Zbl1070.35126MR2146288DOI10.1088/0266-5611/21/2/020
- Lee, K.-M., 10.1016/j.enganabound.2016.08.001, Eng. Anal. Bound. Elem. 71 (2016), 174-178. (2016) MR3539835DOI10.1016/j.enganabound.2016.08.001
- Liu, X., Zhang, B., 10.1016/j.jmaa.2009.11.031, J. Math. Anal. Appl. 365 (2010), 619-624. (2010) Zbl1185.35329MR2587064DOI10.1016/j.jmaa.2009.11.031
- Mönch, L., 10.1088/0266-5611/13/5/017, Inverse Probl. 13 (1997), 1379-1392. (1997) Zbl0894.35079MR1474374DOI10.1088/0266-5611/13/5/017
- Yan, Y., Sloan, I. H., 10.1216/JIE-1988-1-4-549, J. Integral Equations Appl. 1 (1988), 549-579. (1988) Zbl0682.45001MR1008406DOI10.1216/JIE-1988-1-4-549
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.