Inverse scattering via nonlinear integral equations method for a sound-soft crack with phaseless data

Peng Gao; Heping Dong; Fuming Ma

Applications of Mathematics (2018)

  • Volume: 63, Issue: 2, page 149-165
  • ISSN: 0862-7940

Abstract

top
We consider the inverse scattering of time-harmonic plane waves to reconstruct the shape of a sound-soft crack from a knowledge of the given incident field and the phaseless data, and we check the invariance of far field data with respect to translation of the crack. We present a numerical method that is based on a system of nonlinear and ill-posed integral equations, and our scheme is easy and simple to implement. The numerical implementation is described and numerical examples are presented to illustrate the feasibility of the proposed method.

How to cite

top

Gao, Peng, Dong, Heping, and Ma, Fuming. "Inverse scattering via nonlinear integral equations method for a sound-soft crack with phaseless data." Applications of Mathematics 63.2 (2018): 149-165. <http://eudml.org/doc/294238>.

@article{Gao2018,
abstract = {We consider the inverse scattering of time-harmonic plane waves to reconstruct the shape of a sound-soft crack from a knowledge of the given incident field and the phaseless data, and we check the invariance of far field data with respect to translation of the crack. We present a numerical method that is based on a system of nonlinear and ill-posed integral equations, and our scheme is easy and simple to implement. The numerical implementation is described and numerical examples are presented to illustrate the feasibility of the proposed method.},
author = {Gao, Peng, Dong, Heping, Ma, Fuming},
journal = {Applications of Mathematics},
keywords = {inverse scattering problem; Helmholtz equation; crack; phaseless; translation invariance},
language = {eng},
number = {2},
pages = {149-165},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inverse scattering via nonlinear integral equations method for a sound-soft crack with phaseless data},
url = {http://eudml.org/doc/294238},
volume = {63},
year = {2018},
}

TY - JOUR
AU - Gao, Peng
AU - Dong, Heping
AU - Ma, Fuming
TI - Inverse scattering via nonlinear integral equations method for a sound-soft crack with phaseless data
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 149
EP - 165
AB - We consider the inverse scattering of time-harmonic plane waves to reconstruct the shape of a sound-soft crack from a knowledge of the given incident field and the phaseless data, and we check the invariance of far field data with respect to translation of the crack. We present a numerical method that is based on a system of nonlinear and ill-posed integral equations, and our scheme is easy and simple to implement. The numerical implementation is described and numerical examples are presented to illustrate the feasibility of the proposed method.
LA - eng
KW - inverse scattering problem; Helmholtz equation; crack; phaseless; translation invariance
UR - http://eudml.org/doc/294238
ER -

References

top
  1. Ammari, H., Chow, Y. T., Zou, J., 10.1137/15M1043959, SIAM J. Appl. Math. 76 (2016), 1000-1030. (2016) Zbl1338.35490MR3505314DOI10.1137/15M1043959
  2. Bao, G., Zhang, L., 10.1088/0266-5611/32/8/085002, Inverse Probl. 32 (2016), Article ID 085002, 16 pages. (2016) Zbl1351.65083MR3535661DOI10.1088/0266-5611/32/8/085002
  3. Colton, D., Kress, R., 10.1007/978-1-4614-4942-3, Applied Mathematical Sciences 93, Springer, New York (2013). (2013) Zbl1266.35121MR2986407DOI10.1007/978-1-4614-4942-3
  4. Ivanyshyn, O., 10.3934/ipi.2007.1.609, Inverse Probl. Imaging 1 (2007), 609-622. (2007) Zbl1194.35502MR2350217DOI10.3934/ipi.2007.1.609
  5. Ivanyshyn, O., Johansson, T., 10.1216/jiea/1190905488, J. Integral Equations Appl. 19 (2007), 289-308. (2007) Zbl1135.65392MR2363789DOI10.1216/jiea/1190905488
  6. Ivanyshyn, O., Kress, R., 10.1002/mma.970, Math. Methods Appl. Sci. 31 (2008), 1221-1232. (2008) Zbl1153.65367MR2426204DOI10.1002/mma.970
  7. Ivanyshyn, O., Kress, R., 10.3934/ipi.2010.4.131, Inverse Probl. Imaging 4 (2010), 131-149. (2010) Zbl1220.35194MR2592786DOI10.3934/ipi.2010.4.131
  8. Johansson, T., Sleeman, B. D., 10.1093/imamat/hxl026, IMA J. Appl. Math. 72 (2007), 96-112. (2007) Zbl1121.76059MR2309563DOI10.1093/imamat/hxl026
  9. Karageorghis, A., Johansson, B. T., Lesnic, D., 10.1016/j.apnum.2012.05.011, Appl. Numer. Math. 62 (2012), 1767-1780. (2012) Zbl1255.65203MR2980733DOI10.1016/j.apnum.2012.05.011
  10. Kirsch, A., Ritter, S., 10.1088/0266-5611/16/1/308, Inverse Probl. 16 (2000), 89-105. (2000) Zbl0968.35129MR1741229DOI10.1088/0266-5611/16/1/308
  11. Kress, R., 10.1515/jiip.1995.3.4.305, J. Inverse Ill-Posed Probl. 3 (1995), 305-313. (1995) Zbl0846.35146MR1366555DOI10.1515/jiip.1995.3.4.305
  12. Kress, R., 10.1002/mma.1670180403, Math. Methods Appl. Sci. 18 (1995), 267-293. (1995) Zbl0824.35030MR1319999DOI10.1002/mma.1670180403
  13. Kress, R., Rundell, W., 10.1007/978-3-7091-6521-8_7, Inverse Problems in Medical Imaging and Nondestructive Testing H. W. Engl et al. Springer, Wien (1997), 75-92. (1997) Zbl0880.65105MR1603907DOI10.1007/978-3-7091-6521-8_7
  14. Kress, R., Serranho, P., 10.1088/0266-5611/21/2/020, Inverse Probl. 21 (2005), 773-784. (2005) Zbl1070.35126MR2146288DOI10.1088/0266-5611/21/2/020
  15. Lee, K.-M., 10.1016/j.enganabound.2016.08.001, Eng. Anal. Bound. Elem. 71 (2016), 174-178. (2016) MR3539835DOI10.1016/j.enganabound.2016.08.001
  16. Liu, X., Zhang, B., 10.1016/j.jmaa.2009.11.031, J. Math. Anal. Appl. 365 (2010), 619-624. (2010) Zbl1185.35329MR2587064DOI10.1016/j.jmaa.2009.11.031
  17. Mönch, L., 10.1088/0266-5611/13/5/017, Inverse Probl. 13 (1997), 1379-1392. (1997) Zbl0894.35079MR1474374DOI10.1088/0266-5611/13/5/017
  18. Yan, Y., Sloan, I. H., 10.1216/JIE-1988-1-4-549, J. Integral Equations Appl. 1 (1988), 549-579. (1988) Zbl0682.45001MR1008406DOI10.1216/JIE-1988-1-4-549

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.