The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Isotropic almost complex structures and harmonic unit vector fields”

Deformations of Metrics and Biharmonic Maps

Aicha Benkartab, Ahmed Mohammed Cherif (2020)

Communications in Mathematics

Similarity:

We construct biharmonic non-harmonic maps between Riemannian manifolds ( M , g ) and ( N , h ) by first making the ansatz that ϕ : ( M , g ) ( N , h ) be a harmonic map and then deforming the metric on N by h ˜ α = α h + ( 1 - α ) d f d f to render ϕ biharmonic, where f is a smooth function with gradient of constant norm on ( N , h ) and α ( 0 , 1 ) . We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.

Harmonie reflections

Lieven Vanhecke, Maria-Elena Vazquez-Abal (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

We study local reflections ϕ σ with respect to a curve σ in a Riemannian manifold and prove that σ is a geodesic if ϕ σ is a harmonic map. Moreover, we prove that the Riemannian manifold has constant curvature if and only if ϕ σ is harmonic for all geodesies σ .

Harmonie reflections

Lieven Vanhecke, Maria-Elena Vazquez-Abal (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We study local reflections ϕ σ with respect to a curve σ in a Riemannian manifold and prove that σ is a geodesic if ϕ σ is a harmonic map. Moreover, we prove that the Riemannian manifold has constant curvature if and only if ϕ σ is harmonic for all geodesies σ .

Landau's theorem for p-harmonic mappings in several variables

Sh. Chen, S. Ponnusamy, X. Wang (2012)

Annales Polonici Mathematici

Similarity:

A 2p-times continuously differentiable complex-valued function f = u + iv in a domain D ⊆ ℂ is p-harmonic if f satisfies the p-harmonic equation Δ p f = 0 , where p (≥ 1) is a positive integer and Δ represents the complex Laplacian operator. If Ω ⊂ ℂⁿ is a domain, then a function f : Ω m is said to be p-harmonic in Ω if each component function f i (i∈ 1,...,m) of f = ( f , . . . , f m ) is p-harmonic with respect to each variable separately. In this paper, we prove Landau and Bloch’s theorem for a class of p-harmonic mappings...

A characterization of the Riemann extension in terms of harmonicity

Cornelia-Livia Bejan, Şemsi Eken (2017)

Czechoslovak Mathematical Journal

Similarity:

If ( M , ) is a manifold with a symmetric linear connection, then T * M can be endowed with the natural Riemann extension g ¯ (O. Kowalski and M. Sekizawa (2011), M. Sekizawa (1987)). Here we continue to study the harmonicity with respect to g ¯ initiated by C. L. Bejan and O. Kowalski (2015). More precisely, we first construct a canonical almost para-complex structure 𝒫 on ( T * M , g ¯ ) and prove that 𝒫 is harmonic (in the sense of E. García-Río, L. Vanhecke and M. E. Vázquez-Abal (1997)) if and only if g ¯ reduces...

Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures

Amalendu Ghosh (2016)

Mathematica Bohemica

Similarity:

We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures ( g , ± ω ) with constant scalar curvature is either Einstein, or the dual field of ω is Killing. Next, let ( M n , g ) be a complete and connected Riemannian manifold of dimension at least 3 admitting a pair of Einstein-Weyl structures ( g , ± ω ) . Then the Einstein-Weyl vector field E (dual to the 1 -form ω ) generates an infinitesimal harmonic transformation if and only if E is Killing.

Collapse of warped submersions

Szymon M. Walczak (2006)

Annales Polonici Mathematici

Similarity:

We generalize the concept of warped manifold to Riemannian submersions π: M → B between two compact Riemannian manifolds ( M , g M ) and ( B , g B ) in the following way. If f: B → (0,∞) is a smooth function on B which is extended to a function f̂ = f ∘ π constant along the fibres of π then we define a new metric g f on M by g f | × g M | × , g f | × T M ̂ f ̂ ² g M | × T M ̂ , where and denote the bundles of horizontal and vertical vectors. The manifold ( M , g f ) obtained that way is called a warped submersion. The function f is called a warping function. We show...

The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds

Jan Kurek, Włodzimierz Mikulski (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

If ( M , g ) is a Riemannian manifold, we have the well-known base preserving   vector bundle isomorphism T M = ˜ T * M given by v g ( v , - ) between the tangent T M and the cotangent T * M bundles of M . In the present note, we generalize this isomorphism to the one T ( r ) M = ˜ T r * M between the r -th order vector tangent T ( r ) M = ( J r ( M , R ) 0 ) * and the r -th order cotangent T r * M = J r ( M , R ) 0 bundles of M . Next, we describe all base preserving  vector bundle maps C M ( g ) : T ( r ) M T r * M depending on a Riemannian metric g in terms of natural (in g ) tensor fields on M .

Some characterizations of harmonic Bloch and Besov spaces

Xi Fu, Bowen Lu (2016)

Czechoslovak Mathematical Journal

Similarity:

The relationship between weighted Lipschitz functions and analytic Bloch spaces has attracted much attention. In this paper, we define harmonic ω - α -Bloch space and characterize it in terms of ω ( ( 1 - | x | 2 ) β ( 1 - | y | 2 ) α - β ) | f ( x ) - f ( y ) x - y | and ω ( ( 1 - | x | 2 ) β ( 1 - | y | 2 ) α - β ) | f ( x ) - f ( y ) | x | y - x ' | where ω is a majorant. Similar results are extended to harmonic little ω - α -Bloch and Besov spaces. Our results are generalizations of the corresponding ones in G. Ren, U. Kähler (2005).

On the dimension of p -harmonic measure in space

John L. Lewis, Kaj Nyström, Andrew Vogel (2013)

Journal of the European Mathematical Society

Similarity:

Let Ω n , n 3 , and let p , 1 < p < , p 2 , be given. In this paper we study the dimension of p -harmonic measures that arise from non-negative solutions to the p -Laplace equation, vanishing on a portion of Ω , in the setting of δ -Reifenberg flat domains. We prove, for p n , that there exists δ ˜ = δ ˜ ( p , n ) > 0 small such that if Ω is a δ -Reifenberg flat domain with δ < δ ˜ , then p -harmonic measure is concentrated on a set of σ -finite H n 1 -measure. We prove, for p n , that for sufficiently flat Wolff snowflakes the Hausdorff dimension of p -harmonic...

On a question of T. Sheil-Small regarding valency of harmonic maps

Daoud Bshouty, Abdallah Lyzzaik (2012)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The aim of this work is to answer positively a more general question than the following which is due to T. Sheil-Small: Does the harmonic extension in the open unit disc of a mapping f from the unit circle into itself of the form f ( e i t ) = e i φ ( t ) , 0 t 2 π where φ is a continuously non-decreasing function that satisfies φ ( 2 π ) - φ ( 0 ) = 2 N π , assume every value finitely many times in the disc?

Special sets of reals and weak forms of normality on Isbell--Mrówka spaces

Vinicius de Oliveira Rodrigues, Victor dos Santos Ronchim, Paul J. Szeptycki (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We recall some classical results relating normality and some natural weakenings of normality in Ψ -spaces over almost disjoint families of branches in the Cantor tree to special sets of reals like Q -sets, λ -sets and σ -sets. We introduce a new class of special sets of reals which corresponds to the corresponding almost disjoint family of branches being 0 -separated. This new class fits between λ -sets and perfectly meager sets. We also discuss conditions for an almost disjoint family 𝒜 being...

A Weighted Eigenvalue Problems Driven by both p ( · ) -Harmonic and p ( · ) -Biharmonic Operators

Mohamed Laghzal, Abdelouahed El Khalil, Abdelfattah Touzani (2021)

Communications in Mathematics

Similarity:

The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both p ( · ) -Harmonic and p ( · ) -biharmonic operators Δ p ( x ) 2 u - Δ p ( x ) u = λ w ( x ) | u | q ( x ) - 2 u in Ω , u W 2 , p ( · ) ( Ω ) W 0 1 , p ( · ) ( Ω ) , is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces L p ( · ) ( Ω ) and W m , p ( · ) ( Ω ) .

Induced almost continuous functions on hyperspaces

Alejandro Illanes (2006)

Colloquium Mathematicae

Similarity:

For a metric continuum X, let C(X) (resp., 2 X ) be the hyperspace of subcontinua (resp., nonempty closed subsets) of X. Let f: X → Y be an almost continuous function. Let C(f): C(X) → C(Y) and 2 f : 2 X 2 Y be the induced functions given by C ( f ) ( A ) = c l Y ( f ( A ) ) and 2 f ( A ) = c l Y ( f ( A ) ) . In this paper, we prove that: • If 2 f is almost continuous, then f is continuous. • If C(f) is almost continuous and X is locally connected, then f is continuous. • If X is not locally connected, then there exists an almost continuous function f: X → [0,1]...

On the integral representation of finely superharmonic functions

Abderrahim Aslimani, Imad El Ghazi, Mohamed El Kadiri (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In the present paper we study the integral representation of nonnegative finely superharmonic functions in a fine domain subset U of a Brelot 𝒫 -harmonic space Ω with countable base of open subsets and satisfying the axiom D . When Ω satisfies the hypothesis of uniqueness, we define the Martin boundary of U and the Martin kernel K and we obtain the integral representation of invariant functions by using the kernel K . As an application of the integral representation we extend to the cone...

On G -sets and isospectrality

Ori Parzanchevski (2013)

Annales de l’institut Fourier

Similarity:

We study finite G -sets and their tensor product with Riemannian manifolds, and obtain results on isospectral quotients and covers. In particular, we show the following: If M is a compact connected Riemannian manifold (or orbifold) whose fundamental group has a finite non-cyclic quotient, then M has isospectral non-isometric covers.

Asymmetric tie-points and almost clopen subsets of *

Alan S. Dow, Saharon Shelah (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A tie-point of compact space is analogous to a cut-point: the complement of the point falls apart into two relatively clopen non-compact subsets. We review some of the many consistency results that have depended on the construction of tie-points of * . One especially important application, due to Veličković, was to the existence of nontrivial involutions on * . A tie-point of * has been called symmetric if it is the unique fixed point of an involution. We define the notion of an almost...

Sharp Weak-Type Inequality for the Haar System, Harmonic Functions and Martingales

Adam Osękowski (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let ( h k ) k 0 be the Haar system on [0,1]. We show that for any vectors a k from a separable Hilbert space and any ε k [ - 1 , 1 ] , k = 0,1,2,..., we have the sharp inequality | | k = 0 n ε k a k h k | | W ( [ 0 , 1 ] ) 2 | | k = 0 n a k h k | | L ( [ 0 , 1 ] ) , n = 0,1,2,..., where W([0,1]) is the weak- L space introduced by Bennett, DeVore and Sharpley. The above estimate is generalized to the sharp weak-type bound | | Y | | W ( Ω ) 2 | | X | | L ( Ω ) , where X and Y stand for -valued martingales such that Y is differentially subordinate to X. An application to harmonic functions on Euclidean domains is presented.