Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space

Bahloul Rachid

Archivum Mathematicum (2019)

  • Volume: 055, Issue: 2, page 97-108
  • ISSN: 0044-8753

Abstract

top
The aim of this work is to study the existence and uniqueness of solutions of the fractional integro-differential equations d d t [ x ( t ) - L ( x t ) ] = A [ x ( t ) - L ( x t ) ] + G ( x t ) + 1 Γ ( α ) - t ( t - s ) α - 1 ( - s a ( s - ξ ) x ( ξ ) d ξ ) d s + f ( t ) , ( α > 0 ) with the periodic condition x ( 0 ) = x ( 2 π ) , where a L 1 ( + ) . Our approach is based on the R-boundedness of linear operators L p -multipliers and UMD-spaces.

How to cite

top

Rachid, Bahloul. "Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space." Archivum Mathematicum 055.2 (2019): 97-108. <http://eudml.org/doc/294389>.

@article{Rachid2019,
abstract = {The aim of this work is to study the existence and uniqueness of solutions of the fractional integro-differential equations $\frac\{d\}\{dt\}[x(t) - L(x_\{t\})]= A[x(t)- L(x_\{t\})]+G(x_\{t\})+ \frac\{1\}\{\Gamma (\alpha )\} \int _\{- \infty \}^\{t\} (t-s)^\{\alpha - 1\} ( \int _\{- \infty \}^\{s\}a(s-\xi )x(\xi ) d \xi )ds+f(t)$, ($\alpha > 0$) with the periodic condition $x(0) = x(2\pi )$, where $a \in L^\{1\}(\mathbb \{R\}_\{+\})$ . Our approach is based on the R-boundedness of linear operators $L^\{p\}$-multipliers and UMD-spaces.},
author = {Rachid, Bahloul},
journal = {Archivum Mathematicum},
keywords = {periodic solution; $L^\{p\}$-multipliers; UMD-spaces},
language = {eng},
number = {2},
pages = {97-108},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space},
url = {http://eudml.org/doc/294389},
volume = {055},
year = {2019},
}

TY - JOUR
AU - Rachid, Bahloul
TI - Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 2
SP - 97
EP - 108
AB - The aim of this work is to study the existence and uniqueness of solutions of the fractional integro-differential equations $\frac{d}{dt}[x(t) - L(x_{t})]= A[x(t)- L(x_{t})]+G(x_{t})+ \frac{1}{\Gamma (\alpha )} \int _{- \infty }^{t} (t-s)^{\alpha - 1} ( \int _{- \infty }^{s}a(s-\xi )x(\xi ) d \xi )ds+f(t)$, ($\alpha > 0$) with the periodic condition $x(0) = x(2\pi )$, where $a \in L^{1}(\mathbb {R}_{+})$ . Our approach is based on the R-boundedness of linear operators $L^{p}$-multipliers and UMD-spaces.
LA - eng
KW - periodic solution; $L^{p}$-multipliers; UMD-spaces
UR - http://eudml.org/doc/294389
ER -

References

top
  1. Arendt, W., Semigroups and evolution equations: functional calculus, regularity and kernel estimates, Handb. Differ. Equ., vol. I, North-Holland, Amsterdam, 2004, pp. 1–85. (2004) MR2103696
  2. Arendt, W., Bu, S., 10.1007/s002090100384, Math. Z. 240 (2002), 311–343. (2002) Zbl1018.47008MR1900314DOI10.1007/s002090100384
  3. Arendt, W., Bu, S., Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proc. Edinb. Math. Soc. (2) 47 (2004), 15–33. (2004) MR2064734
  4. Bourgain, J., Vector-valued Hausdorff-Young inequalities and applications, Geometric Aspects of Functional Analysis (1986/1987),, vol. 1317, Lecture Notes in Math., Springer Verlag Berlin, 1986, pp. 239–249. (1986) MR0950985
  5. Bourgain, J., Vector-valued singular integrals and the H 1 -BMO duality, probability theory and harmonic analysis ed., Marcel Dekker, New York, 1986. (1986) MR0830227
  6. Bu, S., 10.11650/twjm/1500406172, Taiwanese J. Math. 15 (1) (2011), 229–240. (2011) MR2780282DOI10.11650/twjm/1500406172
  7. Bu, S., Fang, F., 10.4064/sm184-2-1, Studia Math. 184 (2) (2008), 103–119. (2008) MR2365804DOI10.4064/sm184-2-1
  8. Cai, G., Bu, S., 10.1002/mana.201400112, Math. Nachr. 289 (2016), 436–451. (2016) MR3481298DOI10.1002/mana.201400112
  9. Cavalcanti, M.M., Cavalcanti, V.N. Domingos, Guesmia, A., 10.1016/j.jde.2015.08.028, J. Differential Equations 259 (2015), 7540–7577. (2015) MR3401605DOI10.1016/j.jde.2015.08.028
  10. Clément, Ph., Da Prato, G., 10.1007/BF01199303, Integral Equations Operator Theory 11 (1988), 480–500. (1988) MR0950513DOI10.1007/BF01199303
  11. Clément, Ph., de Pagter, B., Sukochev, F.A., Witvliet, M., Schauder decomposition and multiplier theorems, Studia Math. 138 (2000), 135–163. (2000) MR1749077
  12. Clément, Ph., Prüss, J., An operator-valued transference principle and maximal regularity on vector-valued L p -spaces, Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math., vol. 215, Dekker, New York, 2001, pp. 67–87. (2001) MR1816437
  13. Da Prato, G., Lunardi, A., Periodic solutions for linear integrodifferential equations with infinite delay in Banach spaces, Differential Equations in Banach spaces, Lecture Notes in Math., vol. 1223, Springer, Berlin, 1986, pp. 49–60. (1986) MR0872516
  14. de Pagter, B., Witvliet, H., Unconditional decompositions and U M D spaces, Publ. Math. Besançon, Fasc. 16 (1998), 79–111. (1998) MR1768325
  15. Denk, R., Hieber, M., Prüss, Jan, R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc. 788 (2003). (2003) MR2006641
  16. Girardi, M., Weis, L., 10.1002/mana.200310029, Math. Nachr. 251 (2003), 34–51. (2003) MR1960803DOI10.1002/mana.200310029
  17. Girardi, M., Weis, L., 10.1016/S0022-1236(03)00185-X, J. Funct. Anal. 204 (2) (2003), 320–354. (2003) MR2017318DOI10.1016/S0022-1236(03)00185-X
  18. Keyantuo, V., Lizama, C., 10.1112/S0024610704005198, J. London Math. Soc. 69 (3) (2004), 737–750. (2004) MR2050043DOI10.1112/S0024610704005198
  19. Keyantuo, V., Lizama, C., 10.1007/s00209-005-0919-1, Math. Z. 253 (2006), 489–514. (2006) MR2221083DOI10.1007/s00209-005-0919-1
  20. Keyantuo, V., Lizama, C., Poblete, V., 10.1016/j.jde.2008.09.007, J. Differential Equations 246 (2009), 1007–1037. (2009) MR2474584DOI10.1016/j.jde.2008.09.007
  21. Koumla, S., Ezzinbi, Kh., Bahloul, R., 10.1007/s40324-016-0096-7, SeMA J. 74 (4) (2017), 489–501. (2017) MR3736690DOI10.1007/s40324-016-0096-7
  22. Kunstmann, P.C., Weis, L., Maximal L p -regularity for parabolic equations, Fourier multiplier theorems and H -functional calculus, Functional analytic methods for evolution equations, Lecture Notes in Math., vol. 1855, Springer, Berlin, 2004, pp. 65–311. (2004) MR2108959
  23. Lizama, C., 10.1016/j.jmaa.2005.12.043, J. Math. Anal. Appl. 324 (1) (2006), 921–933. (2006) MR2265090DOI10.1016/j.jmaa.2005.12.043
  24. Lizama, C., Poblete, V., 10.1007/s00028-010-0081-z, Journal of Evolution Equations 11 (2011), 57–70. (2011) MR2780573DOI10.1007/s00028-010-0081-z
  25. Poblete, V., Solutions of second-order integro-differental equations on periodic Besov space, Proc. Edinburgh Math. Soc. (2) 50 (20) (2007), 477–492. (2007) MR2334958
  26. Suresh Kumar, P., Balachandran, K., Annapoorani, N., 10.15388/NA.2018.3.3, Nonlinear Analysis: Modelling and Control 23 (3) (2017), 321–340, https://doi.org/10.15388/NA.2018.3.3. (2017) MR3798269DOI10.15388/NA.2018.3.3
  27. Weis, L., A new approach to maximal L p -regularity, Lect. Notes Pure Appl. Math. 2115 (2001), 195–214. (2001) MR1818002
  28. Weis, L., 10.1007/PL00004457, Math. Ann. 319 (2001), 735–758. (2001) MR1825406DOI10.1007/PL00004457

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.