Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space
Archivum Mathematicum (2019)
- Volume: 055, Issue: 2, page 97-108
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topRachid, Bahloul. "Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space." Archivum Mathematicum 055.2 (2019): 97-108. <http://eudml.org/doc/294389>.
@article{Rachid2019,
abstract = {The aim of this work is to study the existence and uniqueness of solutions of the fractional integro-differential equations $\frac\{d\}\{dt\}[x(t) - L(x_\{t\})]= A[x(t)- L(x_\{t\})]+G(x_\{t\})+ \frac\{1\}\{\Gamma (\alpha )\} \int _\{- \infty \}^\{t\} (t-s)^\{\alpha - 1\} ( \int _\{- \infty \}^\{s\}a(s-\xi )x(\xi ) d \xi )ds+f(t)$, ($\alpha > 0$) with the periodic condition $x(0) = x(2\pi )$, where $a \in L^\{1\}(\mathbb \{R\}_\{+\})$ . Our approach is based on the R-boundedness of linear operators $L^\{p\}$-multipliers and UMD-spaces.},
author = {Rachid, Bahloul},
journal = {Archivum Mathematicum},
keywords = {periodic solution; $L^\{p\}$-multipliers; UMD-spaces},
language = {eng},
number = {2},
pages = {97-108},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space},
url = {http://eudml.org/doc/294389},
volume = {055},
year = {2019},
}
TY - JOUR
AU - Rachid, Bahloul
TI - Existence and uniqueness of solutions of the fractional integro-differential equations in vector-valued function space
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 2
SP - 97
EP - 108
AB - The aim of this work is to study the existence and uniqueness of solutions of the fractional integro-differential equations $\frac{d}{dt}[x(t) - L(x_{t})]= A[x(t)- L(x_{t})]+G(x_{t})+ \frac{1}{\Gamma (\alpha )} \int _{- \infty }^{t} (t-s)^{\alpha - 1} ( \int _{- \infty }^{s}a(s-\xi )x(\xi ) d \xi )ds+f(t)$, ($\alpha > 0$) with the periodic condition $x(0) = x(2\pi )$, where $a \in L^{1}(\mathbb {R}_{+})$ . Our approach is based on the R-boundedness of linear operators $L^{p}$-multipliers and UMD-spaces.
LA - eng
KW - periodic solution; $L^{p}$-multipliers; UMD-spaces
UR - http://eudml.org/doc/294389
ER -
References
top- Arendt, W., Semigroups and evolution equations: functional calculus, regularity and kernel estimates, Handb. Differ. Equ., vol. I, North-Holland, Amsterdam, 2004, pp. 1–85. (2004) MR2103696
- Arendt, W., Bu, S., 10.1007/s002090100384, Math. Z. 240 (2002), 311–343. (2002) Zbl1018.47008MR1900314DOI10.1007/s002090100384
- Arendt, W., Bu, S., Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proc. Edinb. Math. Soc. (2) 47 (2004), 15–33. (2004) MR2064734
- Bourgain, J., Vector-valued Hausdorff-Young inequalities and applications, Geometric Aspects of Functional Analysis (1986/1987),, vol. 1317, Lecture Notes in Math., Springer Verlag Berlin, 1986, pp. 239–249. (1986) MR0950985
- Bourgain, J., Vector-valued singular integrals and the -BMO duality, probability theory and harmonic analysis ed., Marcel Dekker, New York, 1986. (1986) MR0830227
- Bu, S., 10.11650/twjm/1500406172, Taiwanese J. Math. 15 (1) (2011), 229–240. (2011) MR2780282DOI10.11650/twjm/1500406172
- Bu, S., Fang, F., 10.4064/sm184-2-1, Studia Math. 184 (2) (2008), 103–119. (2008) MR2365804DOI10.4064/sm184-2-1
- Cai, G., Bu, S., 10.1002/mana.201400112, Math. Nachr. 289 (2016), 436–451. (2016) MR3481298DOI10.1002/mana.201400112
- Cavalcanti, M.M., Cavalcanti, V.N. Domingos, Guesmia, A., 10.1016/j.jde.2015.08.028, J. Differential Equations 259 (2015), 7540–7577. (2015) MR3401605DOI10.1016/j.jde.2015.08.028
- Clément, Ph., Da Prato, G., 10.1007/BF01199303, Integral Equations Operator Theory 11 (1988), 480–500. (1988) MR0950513DOI10.1007/BF01199303
- Clément, Ph., de Pagter, B., Sukochev, F.A., Witvliet, M., Schauder decomposition and multiplier theorems, Studia Math. 138 (2000), 135–163. (2000) MR1749077
- Clément, Ph., Prüss, J., An operator-valued transference principle and maximal regularity on vector-valued -spaces, Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math., vol. 215, Dekker, New York, 2001, pp. 67–87. (2001) MR1816437
- Da Prato, G., Lunardi, A., Periodic solutions for linear integrodifferential equations with infinite delay in Banach spaces, Differential Equations in Banach spaces, Lecture Notes in Math., vol. 1223, Springer, Berlin, 1986, pp. 49–60. (1986) MR0872516
- de Pagter, B., Witvliet, H., Unconditional decompositions and spaces, Publ. Math. Besançon, Fasc. 16 (1998), 79–111. (1998) MR1768325
- Denk, R., Hieber, M., Prüss, Jan, R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc. 788 (2003). (2003) MR2006641
- Girardi, M., Weis, L., 10.1002/mana.200310029, Math. Nachr. 251 (2003), 34–51. (2003) MR1960803DOI10.1002/mana.200310029
- Girardi, M., Weis, L., 10.1016/S0022-1236(03)00185-X, J. Funct. Anal. 204 (2) (2003), 320–354. (2003) MR2017318DOI10.1016/S0022-1236(03)00185-X
- Keyantuo, V., Lizama, C., 10.1112/S0024610704005198, J. London Math. Soc. 69 (3) (2004), 737–750. (2004) MR2050043DOI10.1112/S0024610704005198
- Keyantuo, V., Lizama, C., 10.1007/s00209-005-0919-1, Math. Z. 253 (2006), 489–514. (2006) MR2221083DOI10.1007/s00209-005-0919-1
- Keyantuo, V., Lizama, C., Poblete, V., 10.1016/j.jde.2008.09.007, J. Differential Equations 246 (2009), 1007–1037. (2009) MR2474584DOI10.1016/j.jde.2008.09.007
- Koumla, S., Ezzinbi, Kh., Bahloul, R., 10.1007/s40324-016-0096-7, SeMA J. 74 (4) (2017), 489–501. (2017) MR3736690DOI10.1007/s40324-016-0096-7
- Kunstmann, P.C., Weis, L., Maximal -regularity for parabolic equations, Fourier multiplier theorems and -functional calculus, Functional analytic methods for evolution equations, Lecture Notes in Math., vol. 1855, Springer, Berlin, 2004, pp. 65–311. (2004) MR2108959
- Lizama, C., 10.1016/j.jmaa.2005.12.043, J. Math. Anal. Appl. 324 (1) (2006), 921–933. (2006) MR2265090DOI10.1016/j.jmaa.2005.12.043
- Lizama, C., Poblete, V., 10.1007/s00028-010-0081-z, Journal of Evolution Equations 11 (2011), 57–70. (2011) MR2780573DOI10.1007/s00028-010-0081-z
- Poblete, V., Solutions of second-order integro-differental equations on periodic Besov space, Proc. Edinburgh Math. Soc. (2) 50 (20) (2007), 477–492. (2007) MR2334958
- Suresh Kumar, P., Balachandran, K., Annapoorani, N., 10.15388/NA.2018.3.3, Nonlinear Analysis: Modelling and Control 23 (3) (2017), 321–340, https://doi.org/10.15388/NA.2018.3.3. (2017) MR3798269DOI10.15388/NA.2018.3.3
- Weis, L., A new approach to maximal -regularity, Lect. Notes Pure Appl. Math. 2115 (2001), 195–214. (2001) MR1818002
- Weis, L., 10.1007/PL00004457, Math. Ann. 319 (2001), 735–758. (2001) MR1825406DOI10.1007/PL00004457
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.