A free boundary problem for a predator-prey model with nonlinear prey-taxis
Mohsen Yousefnezhad; Seyyed Abbas Mohammadi; Farid Bozorgnia
Applications of Mathematics (2018)
- Volume: 63, Issue: 2, page 125-147
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topYousefnezhad, Mohsen, Mohammadi, Seyyed Abbas, and Bozorgnia, Farid. "A free boundary problem for a predator-prey model with nonlinear prey-taxis." Applications of Mathematics 63.2 (2018): 125-147. <http://eudml.org/doc/294582>.
@article{Yousefnezhad2018,
abstract = {This paper deals with a reaction-diffusion system modeling a free boundary problem of the predator-prey type with prey-taxis over a one-dimensional habitat. The free boundary represents the spreading front of the predator species. The global existence and uniqueness of classical solutions to this system are established by the contraction mapping principle. With an eye on the biological interpretations, numerical simulations are provided which give a real insight into the behavior of the free boundary and the stability of the solutions.},
author = {Yousefnezhad, Mohsen, Mohammadi, Seyyed Abbas, Bozorgnia, Farid},
journal = {Applications of Mathematics},
keywords = {prey-predator model; prey-taxis; free boundary; classical solutions; global existence},
language = {eng},
number = {2},
pages = {125-147},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A free boundary problem for a predator-prey model with nonlinear prey-taxis},
url = {http://eudml.org/doc/294582},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Yousefnezhad, Mohsen
AU - Mohammadi, Seyyed Abbas
AU - Bozorgnia, Farid
TI - A free boundary problem for a predator-prey model with nonlinear prey-taxis
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 125
EP - 147
AB - This paper deals with a reaction-diffusion system modeling a free boundary problem of the predator-prey type with prey-taxis over a one-dimensional habitat. The free boundary represents the spreading front of the predator species. The global existence and uniqueness of classical solutions to this system are established by the contraction mapping principle. With an eye on the biological interpretations, numerical simulations are provided which give a real insight into the behavior of the free boundary and the stability of the solutions.
LA - eng
KW - prey-predator model; prey-taxis; free boundary; classical solutions; global existence
UR - http://eudml.org/doc/294582
ER -
References
top- Ainseba, B. E., Bendahmane, M., Noussair, A., 10.1016/j.nonrwa.2007.06.017, Nonlinear Anal., Real World Appl. 9 (2008), 2086-2105. (2008) Zbl1156.35404MR2441768DOI10.1016/j.nonrwa.2007.06.017
- Bozorgnia, F., Arakelyan, A., 10.1016/j.amc.2013.03.074, Appl. Math. Comput. 219 (2013), 8863-8875. (2013) Zbl1291.65257MR3047783DOI10.1016/j.amc.2013.03.074
- Bunting, G., Du, Y., Krakowski, K., 10.3934/nhm.2012.7.583, Netw. Heterog. Media 7 (2012), 583-603. (2012) Zbl1302.35194MR3004677DOI10.3934/nhm.2012.7.583
- Chen, X., Friedman, A., 10.1137/S0036141099351693, SIAM J. Math. Anal. 32 (2000), 778-800. (2000) Zbl0972.35193MR1814738DOI10.1137/S0036141099351693
- Du, Y., Guo, Z., 10.1016/j.jde.2012.04.014, J. Differ. Equations 253 (2012), 996-1035. (2012) Zbl1257.35110MR2922661DOI10.1016/j.jde.2012.04.014
- Friedman, A., Variational Principles and Free-Boundary Problems, Pure and Applied Mathematics. A Wiley-Interscience Publication, John Wiley & Sons, New York (1982). (1982) Zbl0564.49002MR0679313
- He, X., Zheng, S., 10.1016/j.aml.2015.04.017, Appl. Math. Lett. 49 (2015), 73-77. (2015) Zbl06587041MR3361698DOI10.1016/j.aml.2015.04.017
- Hillen, T., Painter, K. J., 10.1007/s00285-008-0201-3, J. Math. Biol. 58 (2009), 183-217. (2009) Zbl1161.92003MR2448428DOI10.1007/s00285-008-0201-3
- Hsu, S.-B., Huang, T.-W., 10.1137/S0036139993253201, SIAM J. Appl. Math. 55 (1995), 763-783. (1995) Zbl0832.34035MR1331585DOI10.1137/S0036139993253201
- Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N., Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs 23, American Mathematical Society, Providence (1968). (1968) Zbl0174.15403MR0241822
- Levin, S. A., 10.1086/283170, Amer. Natur. 111 (1977), 381-383. (1977) DOI10.1086/283170
- Li, A.-W., 10.1007/s11071-010-9941-x, Nonlinear Dyn. 66 (2011), 689-694. (2011) MR2859594DOI10.1007/s11071-010-9941-x
- Li, L., Jin, Z., 10.1007/s11071-011-0101-8, Nonlinear Dyn. 67 (2012), 1737-1744. (2012) MR2877412DOI10.1007/s11071-011-0101-8
- Li, C., Wang, X., Shao, Y., 10.1016/j.na.2013.11.022, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 97 (2014), 155-168. (2014) Zbl1287.35018MR3146380DOI10.1016/j.na.2013.11.022
- Lin, Z., 10.1088/0951-7715/20/8/004, Nonlinearity 20 (2007), 1883-1892. (2007) Zbl1126.35111MR2343682DOI10.1088/0951-7715/20/8/004
- Markowich, P. A., 10.1007/978-3-540-34646-3, Springer, Berlin (2007). (2007) Zbl1109.35001MR2309862DOI10.1007/978-3-540-34646-3
- Mimura, M., Kawasaki, K., 10.1007/BF00276035, J. Math. Biol. 9 (1980), 49-64. (1980) Zbl0425.92010MR0648845DOI10.1007/BF00276035
- Mimura, M., Murray, J. D., 10.1016/0022-5193(78)90332-6, J. Theor. Biol. 75 (1978), 249-252. (1978) MR0518476DOI10.1016/0022-5193(78)90332-6
- Monobe, H., Wu, C.-H., 10.1016/j.jde.2016.08.033, J. Diff. Equations 261 (2016), 6144-6177. (2016) Zbl1351.35070MR3552561DOI10.1016/j.jde.2016.08.033
- Othmer, H. G., Stevens, A., 10.1137/S0036139995288976, SIAM J. Appl. Math. 57 (1997), 1044-1081. (1997) Zbl0990.35128MR1462051DOI10.1137/S0036139995288976
- Painter, K. J., Hillen, T., Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q. 10 (2002), 501-543. (2002) Zbl1057.92013MR2052525
- Sun, G.-Q., 10.1007/s11071-016-2671-y, Nonlinear Dyn. 85 (2016), 1-12. (2016) MR3510594DOI10.1007/s11071-016-2671-y
- Tao, Y., 10.1016/j.nonrwa.2009.05.005, Nonlinear Anal., Real World Appl. 11 (2010), 2056-2064. (2010) Zbl1195.35171MR2646615DOI10.1016/j.nonrwa.2009.05.005
- Xiao, D., Ruan, S., 10.1007/s002850100097, J. Math. Biol. 43 (2001), 268-290. (2001) Zbl1007.34031MR1868217DOI10.1007/s002850100097
- Wang, M., 10.1016/j.jde.2014.02.013, J. Differ. Equations 256 (2014), 3365-3394. (2014) Zbl1317.35110MR3177899DOI10.1016/j.jde.2014.02.013
- Wang, M., 10.1016/j.cnsns.2014.11.016, Commun. Nonlinear Sci. Numer. Simul. 23 (2015), 311-327. (2015) Zbl1354.92074MR3312368DOI10.1016/j.cnsns.2014.11.016
- Yousefnezhad, M., Mohammadi, S. A., 10.1016/S0252-9602(15)30078-3, Acta Math. Sci., Ser. B, Engl. Ed. 36 (2016), 62-72. (2016) Zbl1363.35185MR3432748DOI10.1016/S0252-9602(15)30078-3
- Zhao, J., Wang, M., 10.1016/j.nonrwa.2013.10.003, Nonlinear Anal., Real World Appl. 16 (2014), 250-263. (2014) Zbl1296.35220MR3123816DOI10.1016/j.nonrwa.2013.10.003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.