A free boundary problem for a predator-prey model with nonlinear prey-taxis

Mohsen Yousefnezhad; Seyyed Abbas Mohammadi; Farid Bozorgnia

Applications of Mathematics (2018)

  • Volume: 63, Issue: 2, page 125-147
  • ISSN: 0862-7940

Abstract

top
This paper deals with a reaction-diffusion system modeling a free boundary problem of the predator-prey type with prey-taxis over a one-dimensional habitat. The free boundary represents the spreading front of the predator species. The global existence and uniqueness of classical solutions to this system are established by the contraction mapping principle. With an eye on the biological interpretations, numerical simulations are provided which give a real insight into the behavior of the free boundary and the stability of the solutions.

How to cite

top

Yousefnezhad, Mohsen, Mohammadi, Seyyed Abbas, and Bozorgnia, Farid. "A free boundary problem for a predator-prey model with nonlinear prey-taxis." Applications of Mathematics 63.2 (2018): 125-147. <http://eudml.org/doc/294582>.

@article{Yousefnezhad2018,
abstract = {This paper deals with a reaction-diffusion system modeling a free boundary problem of the predator-prey type with prey-taxis over a one-dimensional habitat. The free boundary represents the spreading front of the predator species. The global existence and uniqueness of classical solutions to this system are established by the contraction mapping principle. With an eye on the biological interpretations, numerical simulations are provided which give a real insight into the behavior of the free boundary and the stability of the solutions.},
author = {Yousefnezhad, Mohsen, Mohammadi, Seyyed Abbas, Bozorgnia, Farid},
journal = {Applications of Mathematics},
keywords = {prey-predator model; prey-taxis; free boundary; classical solutions; global existence},
language = {eng},
number = {2},
pages = {125-147},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A free boundary problem for a predator-prey model with nonlinear prey-taxis},
url = {http://eudml.org/doc/294582},
volume = {63},
year = {2018},
}

TY - JOUR
AU - Yousefnezhad, Mohsen
AU - Mohammadi, Seyyed Abbas
AU - Bozorgnia, Farid
TI - A free boundary problem for a predator-prey model with nonlinear prey-taxis
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 125
EP - 147
AB - This paper deals with a reaction-diffusion system modeling a free boundary problem of the predator-prey type with prey-taxis over a one-dimensional habitat. The free boundary represents the spreading front of the predator species. The global existence and uniqueness of classical solutions to this system are established by the contraction mapping principle. With an eye on the biological interpretations, numerical simulations are provided which give a real insight into the behavior of the free boundary and the stability of the solutions.
LA - eng
KW - prey-predator model; prey-taxis; free boundary; classical solutions; global existence
UR - http://eudml.org/doc/294582
ER -

References

top
  1. Ainseba, B. E., Bendahmane, M., Noussair, A., 10.1016/j.nonrwa.2007.06.017, Nonlinear Anal., Real World Appl. 9 (2008), 2086-2105. (2008) Zbl1156.35404MR2441768DOI10.1016/j.nonrwa.2007.06.017
  2. Bozorgnia, F., Arakelyan, A., 10.1016/j.amc.2013.03.074, Appl. Math. Comput. 219 (2013), 8863-8875. (2013) Zbl1291.65257MR3047783DOI10.1016/j.amc.2013.03.074
  3. Bunting, G., Du, Y., Krakowski, K., 10.3934/nhm.2012.7.583, Netw. Heterog. Media 7 (2012), 583-603. (2012) Zbl1302.35194MR3004677DOI10.3934/nhm.2012.7.583
  4. Chen, X., Friedman, A., 10.1137/S0036141099351693, SIAM J. Math. Anal. 32 (2000), 778-800. (2000) Zbl0972.35193MR1814738DOI10.1137/S0036141099351693
  5. Du, Y., Guo, Z., 10.1016/j.jde.2012.04.014, J. Differ. Equations 253 (2012), 996-1035. (2012) Zbl1257.35110MR2922661DOI10.1016/j.jde.2012.04.014
  6. Friedman, A., Variational Principles and Free-Boundary Problems, Pure and Applied Mathematics. A Wiley-Interscience Publication, John Wiley & Sons, New York (1982). (1982) Zbl0564.49002MR0679313
  7. He, X., Zheng, S., 10.1016/j.aml.2015.04.017, Appl. Math. Lett. 49 (2015), 73-77. (2015) Zbl06587041MR3361698DOI10.1016/j.aml.2015.04.017
  8. Hillen, T., Painter, K. J., 10.1007/s00285-008-0201-3, J. Math. Biol. 58 (2009), 183-217. (2009) Zbl1161.92003MR2448428DOI10.1007/s00285-008-0201-3
  9. Hsu, S.-B., Huang, T.-W., 10.1137/S0036139993253201, SIAM J. Appl. Math. 55 (1995), 763-783. (1995) Zbl0832.34035MR1331585DOI10.1137/S0036139993253201
  10. Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N., Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs 23, American Mathematical Society, Providence (1968). (1968) Zbl0174.15403MR0241822
  11. Levin, S. A., 10.1086/283170, Amer. Natur. 111 (1977), 381-383. (1977) DOI10.1086/283170
  12. Li, A.-W., 10.1007/s11071-010-9941-x, Nonlinear Dyn. 66 (2011), 689-694. (2011) MR2859594DOI10.1007/s11071-010-9941-x
  13. Li, L., Jin, Z., 10.1007/s11071-011-0101-8, Nonlinear Dyn. 67 (2012), 1737-1744. (2012) MR2877412DOI10.1007/s11071-011-0101-8
  14. Li, C., Wang, X., Shao, Y., 10.1016/j.na.2013.11.022, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 97 (2014), 155-168. (2014) Zbl1287.35018MR3146380DOI10.1016/j.na.2013.11.022
  15. Lin, Z., 10.1088/0951-7715/20/8/004, Nonlinearity 20 (2007), 1883-1892. (2007) Zbl1126.35111MR2343682DOI10.1088/0951-7715/20/8/004
  16. Markowich, P. A., 10.1007/978-3-540-34646-3, Springer, Berlin (2007). (2007) Zbl1109.35001MR2309862DOI10.1007/978-3-540-34646-3
  17. Mimura, M., Kawasaki, K., 10.1007/BF00276035, J. Math. Biol. 9 (1980), 49-64. (1980) Zbl0425.92010MR0648845DOI10.1007/BF00276035
  18. Mimura, M., Murray, J. D., 10.1016/0022-5193(78)90332-6, J. Theor. Biol. 75 (1978), 249-252. (1978) MR0518476DOI10.1016/0022-5193(78)90332-6
  19. Monobe, H., Wu, C.-H., 10.1016/j.jde.2016.08.033, J. Diff. Equations 261 (2016), 6144-6177. (2016) Zbl1351.35070MR3552561DOI10.1016/j.jde.2016.08.033
  20. Othmer, H. G., Stevens, A., 10.1137/S0036139995288976, SIAM J. Appl. Math. 57 (1997), 1044-1081. (1997) Zbl0990.35128MR1462051DOI10.1137/S0036139995288976
  21. Painter, K. J., Hillen, T., Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q. 10 (2002), 501-543. (2002) Zbl1057.92013MR2052525
  22. Sun, G.-Q., 10.1007/s11071-016-2671-y, Nonlinear Dyn. 85 (2016), 1-12. (2016) MR3510594DOI10.1007/s11071-016-2671-y
  23. Tao, Y., 10.1016/j.nonrwa.2009.05.005, Nonlinear Anal., Real World Appl. 11 (2010), 2056-2064. (2010) Zbl1195.35171MR2646615DOI10.1016/j.nonrwa.2009.05.005
  24. Xiao, D., Ruan, S., 10.1007/s002850100097, J. Math. Biol. 43 (2001), 268-290. (2001) Zbl1007.34031MR1868217DOI10.1007/s002850100097
  25. Wang, M., 10.1016/j.jde.2014.02.013, J. Differ. Equations 256 (2014), 3365-3394. (2014) Zbl1317.35110MR3177899DOI10.1016/j.jde.2014.02.013
  26. Wang, M., 10.1016/j.cnsns.2014.11.016, Commun. Nonlinear Sci. Numer. Simul. 23 (2015), 311-327. (2015) Zbl1354.92074MR3312368DOI10.1016/j.cnsns.2014.11.016
  27. Yousefnezhad, M., Mohammadi, S. A., 10.1016/S0252-9602(15)30078-3, Acta Math. Sci., Ser. B, Engl. Ed. 36 (2016), 62-72. (2016) Zbl1363.35185MR3432748DOI10.1016/S0252-9602(15)30078-3
  28. Zhao, J., Wang, M., 10.1016/j.nonrwa.2013.10.003, Nonlinear Anal., Real World Appl. 16 (2014), 250-263. (2014) Zbl1296.35220MR3123816DOI10.1016/j.nonrwa.2013.10.003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.