Control variational method approach to bending and contact problems for Gao beam
Jitka Machalová; Horymír Netuka
Applications of Mathematics (2017)
- Volume: 62, Issue: 6, page 661-677
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMachalová, Jitka, and Netuka, Horymír. "Control variational method approach to bending and contact problems for Gao beam." Applications of Mathematics 62.6 (2017): 661-677. <http://eudml.org/doc/294595>.
@article{Machalová2017,
abstract = {This paper deals with a nonlinear beam model which was published by D. Y. Gao in 1996. It is considered either pure bending or a unilateral contact with elastic foundation, where the normal compliance condition is employed. Under additional assumptions on data, higher regularity of solution is proved. It enables us to transform the problem into a control variational problem. For basic types of boundary conditions, suitable transformations of the problem are derived. The control variational problem contains a simple linear state problem and it is solved by the conditioned gradient method. Illustrative numerical examples are introduced in order to compare the Gao beam with the classical Euler-Bernoulli beam.},
author = {Machalová, Jitka, Netuka, Horymír},
journal = {Applications of Mathematics},
keywords = {nonlinear beam; elastic foundation; contact problem; normal compliance condition; control variational method; finite element method},
language = {eng},
number = {6},
pages = {661-677},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Control variational method approach to bending and contact problems for Gao beam},
url = {http://eudml.org/doc/294595},
volume = {62},
year = {2017},
}
TY - JOUR
AU - Machalová, Jitka
AU - Netuka, Horymír
TI - Control variational method approach to bending and contact problems for Gao beam
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 6
SP - 661
EP - 677
AB - This paper deals with a nonlinear beam model which was published by D. Y. Gao in 1996. It is considered either pure bending or a unilateral contact with elastic foundation, where the normal compliance condition is employed. Under additional assumptions on data, higher regularity of solution is proved. It enables us to transform the problem into a control variational problem. For basic types of boundary conditions, suitable transformations of the problem are derived. The control variational problem contains a simple linear state problem and it is solved by the conditioned gradient method. Illustrative numerical examples are introduced in order to compare the Gao beam with the classical Euler-Bernoulli beam.
LA - eng
KW - nonlinear beam; elastic foundation; contact problem; normal compliance condition; control variational method; finite element method
UR - http://eudml.org/doc/294595
ER -
References
top- Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics 65, Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
- Andrews, K. T., Dumont, Y., M'Bengue, M. F., Purcell, J., Shillor, M., 10.1007/s00033-012-0233-9, Z. Angew. Math. Phys. 63 (2012), 1005-1019. (2012) Zbl1261.35093MR3000712DOI10.1007/s00033-012-0233-9
- Andrews, K. T., Kuttler, K. L., Shillor, M., 10.1007/978-3-319-14490-0_9, W. Han et al. Advances in Variational and Hemivariational Inequalities Advances in Mechanics and Mathematics 33, Springer, Cham (2015), 225-248. (2015) Zbl1317.74049MR3380538DOI10.1007/978-3-319-14490-0_9
- Arnautu, V., Langmach, H., Sprekels, J., Tiba, D., 10.1080/01630560008816960, Numer. Funct. Anal. Optimization 21 (2000), 337-354. (2000) Zbl0976.49025MR1769880DOI10.1080/01630560008816960
- Barboteu, M., Sofonea, M., Tiba, D., 10.1002/zamm.201000161, ZAMM, Z. Angew. Math. Mech. 92 (2012), 25-40. (2012) Zbl1304.74033MR2871899DOI10.1002/zamm.201000161
- Cai, K., Gao, D. Y., Qin, Q. H., 10.1177/1081286513482483, Math. Mech. Solids 19 (2014), 659-671. (2014) Zbl1298.74085MR3228236DOI10.1177/1081286513482483
- Eisley, J. G., Waas, A. M., 10.1002/9781119993278, John Wiley & Sons, Hoboken (2011). (2011) Zbl1232.74001DOI10.1002/9781119993278
- Fučík, S., Kufner, A., Nonlinear Differential Equations. Studies in Applied Mechanics 2, Elsevier Scientific Publishing Company, Amsterdam (1980). (1980) Zbl0426.35001MR0558764
- Gao, D. Y., 10.1016/0093-6413(95)00071-2, Mech. Res. Commun. 23 (1996), 11-17. (1996) Zbl0843.73042MR1371779DOI10.1016/0093-6413(95)00071-2
- Gao, D. Y., 10.1007/978-1-4757-3176-7, Nonconvex Optimization and Its Applications 39, Kluwer Academic Publihers, Dordrecht (2000). (2000) Zbl0940.49001MR1773838DOI10.1007/978-1-4757-3176-7
- Gao, D. Y., Machalová, J., Netuka, H., 10.1016/j.nonrwa.2014.09.012, Nonlinear Anal., Real World Appl. 22 (2015), 537-550. (2015) Zbl1326.74075MR3280850DOI10.1016/j.nonrwa.2014.09.012
- Gao, D. Y., Ogden, R. W., 10.1007/s00033-007-7047-1, Z. Angew. Math. Phys. 59 (2008), 498-517. (2008) Zbl1143.74018MR2399352DOI10.1007/s00033-007-7047-1
- Glowinski, R., Lions, J. L., Trémolières, R., 10.1016/s0168-2024(08)70201-7, Studies in Mathematics and Its Applications 8, North-Holland Publishing, Amsterdam (1981). (1981) Zbl0463.65046MR0635927DOI10.1016/s0168-2024(08)70201-7
- Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J., 10.1007/978-1-4612-1048-1, Applied Mathematical Sciences 66, Springer, New York (1988). (1988) Zbl0654.73019MR0952855DOI10.1007/978-1-4612-1048-1
- Horák, J. V., Netuka, H., Mathematical model of pseudointeractive set: 1D body on non-linear subsoil. I. Theoretical aspects, Engineering Mechanics 14 (2007), 311-325. (2007)
- Lions, J. L., Optimal Control of Systems Governed by Partial Differential Equations, Die Grundlehren der mathematischen Wissenschaften 170, Springer, Berlin (1971). (1971) Zbl0203.09001MR0271512
- Machalová, J., Netuka, H., 10.1063/1.3636963, Numerical Analysis and Applied Mathematics ICNAAM 2011 T. E. Simos et al. AIP Conference Proceedings 1389, AIP-Press, Springer (2011), 1820-1824. (2011) DOI10.1063/1.3636963
- Machalová, J., Netuka, H., 10.1155/2015/420649, J. Appl. Math. 2015 (2015), Article ID 420649, 12 pages. (2015) MR3399550DOI10.1155/2015/420649
- Machalová, J., Netuka, H., 10.1177/1081286517732382, (to appear) in Math. Mech. Solids. Special issue on Inequality Problems in Contact Mechanics (2017). MR3399550DOI10.1177/1081286517732382
- Neittaanmäki, P., Sprekels, J., Tiba, D., 10.1007/b138797, Springer Monographs in Mathematics, Springer, New York (2006). (2006) Zbl1106.49002MR2183776DOI10.1007/b138797
- Reddy, J. N., An Introduction to the Finite Element Method, McGraw-Hill Book Company, New York (2006). (2006) Zbl0561.65079MR0033470
- Shillor, M., Sofonea, M., Telega, J. J., 10.1007/b99799, Lecture Notes in Physics 655, Springer, Berlin (2004). (2004) Zbl1069.74001DOI10.1007/b99799
- Šimeček, R., 10.1007/s10492-013-0016-4, Appl. Math., Praha 58 (2013), 329-346. (2013) Zbl1289.49002MR3066824DOI10.1007/s10492-013-0016-4
- Sofonea, M., Matei, A., 10.1017/CBO9781139104166, London Mathematical Society Lecture Note Series 398, Cambridge University Press, Cambridge (2012). (2012) Zbl1255.49002DOI10.1017/CBO9781139104166
- Sofonea, M., Tiba, D., The control variational method for contact of Euler-Bernoulli beams, Bull. Trans. Univ. Braşov, Ser. III, Math. Inform. Phys. 2 (2009), 127-136. (2009) Zbl1224.74088MR2642501
- Sysala, S., 10.1007/s10492-008-0030-0, Appl. Math., Praha 53 (2008), 347-379. (2008) Zbl1199.49051MR2433726DOI10.1007/s10492-008-0030-0
- Sysala, S., 10.1007/s10492-010-0006-8, Appl. Math., Praha 55 (2010), 151-187. (2010) Zbl1224.74011MR2600940DOI10.1007/s10492-010-0006-8
- Tröltzsch, F., 10.1090/gsm/112, Graduate Studies in Mathematics 112, American Mathematical Society, Providence (2010). (2010) Zbl1195.49001MR2583281DOI10.1090/gsm/112
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.