Existence results for impulsive fractional differential equations with p -Laplacian via variational methods

John R. Graef; Shapour Heidarkhani; Lingju Kong; Shahin Moradi

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 1, page 95-112
  • ISSN: 0862-7959

Abstract

top
This paper presents several sufficient conditions for the existence of at least one classical solution to impulsive fractional differential equations with a p -Laplacian and Dirichlet boundary conditions. Our technical approach is based on variational methods. Some recent results are extended and improved. Moreover, a concrete example of an application is presented.

How to cite

top

Graef, John R., et al. "Existence results for impulsive fractional differential equations with $p$-Laplacian via variational methods." Mathematica Bohemica 147.1 (2022): 95-112. <http://eudml.org/doc/297885>.

@article{Graef2022,
abstract = {This paper presents several sufficient conditions for the existence of at least one classical solution to impulsive fractional differential equations with a $p$-Laplacian and Dirichlet boundary conditions. Our technical approach is based on variational methods. Some recent results are extended and improved. Moreover, a concrete example of an application is presented.},
author = {Graef, John R., Heidarkhani, Shapour, Kong, Lingju, Moradi, Shahin},
journal = {Mathematica Bohemica},
keywords = {fractional $p$-Laplacian; impulsive effect; classical solution; variational method},
language = {eng},
number = {1},
pages = {95-112},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence results for impulsive fractional differential equations with $p$-Laplacian via variational methods},
url = {http://eudml.org/doc/297885},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Graef, John R.
AU - Heidarkhani, Shapour
AU - Kong, Lingju
AU - Moradi, Shahin
TI - Existence results for impulsive fractional differential equations with $p$-Laplacian via variational methods
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 1
SP - 95
EP - 112
AB - This paper presents several sufficient conditions for the existence of at least one classical solution to impulsive fractional differential equations with a $p$-Laplacian and Dirichlet boundary conditions. Our technical approach is based on variational methods. Some recent results are extended and improved. Moreover, a concrete example of an application is presented.
LA - eng
KW - fractional $p$-Laplacian; impulsive effect; classical solution; variational method
UR - http://eudml.org/doc/297885
ER -

References

top
  1. Afrouzi, G. A., Hadjian, A., Bisci, G. Molica, 10.1515/anona-2013-0021, Adv. Nonlinear Anal. 2 (2013), 427-441. (2013) Zbl1283.34014MR3199740DOI10.1515/anona-2013-0021
  2. Agarwal, R. P., Franco, D., O'Regan, D., 10.1007/s00010-004-2735-9, Aequationes Math. 69 (2005), 83-96. (2005) Zbl1073.34025MR2126188DOI10.1007/s00010-004-2735-9
  3. Agarwal, R. P., Hristova, S., O'Regan, D., 10.1007/978-3-319-66384-5, Springer, Cham (2017). (2017) Zbl1426.34001MR3726876DOI10.1007/978-3-319-66384-5
  4. Baek, H., 10.1155/2008/752403, Discrete Dyn. Nat. Soc. 2008 (2008), Article ID 752403, 18 pages. (2008) Zbl1167.34350MR2452458DOI10.1155/2008/752403
  5. Bai, C., 10.1016/j.jmaa.2011.05.082, J. Math. Anal. Appl. 384 (2011), 211-231. (2011) Zbl1234.34005MR2825176DOI10.1016/j.jmaa.2011.05.082
  6. Bai, C., 10.14232/ejqtde.2011.1.89, Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Article ID 89, 19 pages. (2011) Zbl1340.34007MR2854028DOI10.14232/ejqtde.2011.1.89
  7. Bhairat, S. P., Dhaigude, D.-B., 10.21136/MB.2018.0135-17, Math. Bohem. 144 (2019), 203-220. (2019) Zbl07088846MR3974188DOI10.21136/MB.2018.0135-17
  8. Bonanno, G., Candito, P., 10.1007/s00013-003-0479-8, Arch. Math. 80 (2003), 424-429. (2003) Zbl1161.35382MR1982841DOI10.1007/s00013-003-0479-8
  9. Bonanno, G., D'Aguì, G., 10.1155/2010/564363, Abstr. Appl. Anal. 2010 (2010), Article ID 564363, 10 pages. (2010) Zbl1207.35118MR2674389DOI10.1155/2010/564363
  10. Bonanno, G., Bisci, G. Molica, 10.1155/2009/670675, Bound. Value Probl. 2009 (2009), Article ID 670675, 20 pages. (2009) Zbl1177.34038MR2487254DOI10.1155/2009/670675
  11. Bonanno, G., Rodríguez-López, R., Tersian, S., 10.2478/s13540-014-0196-y, Fract. Calc. Appl. Anal. 17 (2014), 717-744. (2014) Zbl1308.34010MR3260304DOI10.2478/s13540-014-0196-y
  12. Chen, L., Sun, J., 10.1016/j.jmaa.2005.08.012, J. Math. Anal. Appl. 318 (2006), 726-741. (2006) Zbl1102.34052MR2215181DOI10.1016/j.jmaa.2005.08.012
  13. Chen, J., Tang, X. H., 10.1155/2012/648635, Abstr. Appl. Anal. 2012 (2012), Article ID 648635, 21 pages. (2012) Zbl1235.34011MR2872321DOI10.1155/2012/648635
  14. Chu, J., Nieto, J. J., 10.1112/blms/bdm110, Bull. Lond. Math. Soc. 40 (2008), 143-150. (2008) Zbl1144.34016MR2409187DOI10.1112/blms/bdm110
  15. Diethelm, K., 10.1007/978-3-642-14574-2, Lecture Notes in Mathematics 2004. Springer, Berlin (2010). (2010) Zbl1215.34001MR2680847DOI10.1007/978-3-642-14574-2
  16. Faraci, F., 10.1016/j.na.2005.02.066, Nonlinear Anal., Theory Methods Appl., Ser. A 63 (2005), e1017--e1029. (2005) Zbl1224.35152DOI10.1016/j.na.2005.02.066
  17. Galewski, M., Bisci, G. Molica, 10.1002/mma.3582, Math. Methods Appl. Sci. 39 (2016), 1480-1492. (2016) Zbl1381.34012MR3483509DOI10.1002/mma.3582
  18. Gao, D., Li, J., 10.2989/16073606.2019.1609619, Quaest. Math. 43 (2020), 1285-1301. (2020) Zbl07307597MR4168249DOI10.2989/16073606.2019.1609619
  19. Gao, Z., Yang, L., Liu, G., 10.4236/am.2013.46118, Appl. Math., Irvine 4 (2013), 859-863. (2013) DOI10.4236/am.2013.46118
  20. Graef, J. R., Kong, L., Kong, Q., 10.1080/00036811.2014.930822, Appl. Anal. 94 (2015), 1288-1304. (2015) Zbl1323.34007MR3325346DOI10.1080/00036811.2014.930822
  21. Guo, L., Zhang, X., 10.1007/s12190-013-0689-6, J. Appl. Math. Comput. 44 (2014), 215-228. (2014) Zbl1300.34017MR3147738DOI10.1007/s12190-013-0689-6
  22. Heidarkhani, S., Multiple solutions for a nonlinear perturbed fractional boundary value problem, Dyn. Syst. Appl. 23 (2014), 317-331. (2014) Zbl1321.34012MR3241882
  23. Heidarkhani, S., Afrouzi, G. A., Ferrara, M., Caristi, G., Moradi, S., 10.1007/s40840-016-0400-9, Bull. Malays. Math. Sci. Soc. (2) 41 (2018), 1409-1428. (2018) Zbl1401.34031MR3818425DOI10.1007/s40840-016-0400-9
  24. Heidarkhani, S., Afrouzi, G. A., Moradi, S., Caristi, G., Ge, B., 10.1007/s00033-016-0668-5, Z. Angew. Math. Phys. 67 (2016), Article ID 73, 13 pages. (2016) Zbl1353.35153MR3508996DOI10.1007/s00033-016-0668-5
  25. Heidarkhani, S., Zhao, Y., Caristi, G., Afrouzi, G. A., Moradi, S., 10.1080/00036811.2016.1192147, Appl. Anal. 96 (2017), 1401-1424. (2017) Zbl1367.34007MR3633869DOI10.1080/00036811.2016.1192147
  26. (ed.), R. Hilfer, 10.1142/3779, World Scientific, Singapore (2000). (2000) Zbl0998.26002MR1890104DOI10.1142/3779
  27. Jiao, F., Zhou, Y., 10.1016/j.camwa.2011.03.086, Comput. Math. Appl. 62 (2011), 1181-1199. (2011) Zbl1235.34017MR2824707DOI10.1016/j.camwa.2011.03.086
  28. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)x8001-5, North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)x8001-5
  29. Kong, L., Existence of solutions to boundary value problems arising from the fractional advection dispersion equation, Electron. J. Differ. Equ. 2013 (2013), Article ID 106, 15 pages. (2013) Zbl1291.34016MR3065059
  30. Li, W., Zhen, H., 10.1016/0362-546X(94)E0051-H, Nonlinear Anal., Theory Methods Appl. 24 (1995), 185-193. (1995) Zbl0828.35041MR1312589DOI10.1016/0362-546X(94)E0051-H
  31. Nieto, J. J., O'Regan, D., 10.1016/j.nonrwa.2007.10.022, Nonlinear Anal., Real World Appl. 10 (2009), 680-690. (2009) Zbl1167.34318MR2474254DOI10.1016/j.nonrwa.2007.10.022
  32. Nieto, J. J., Uzal, J. M., 10.1007/s11784-019-0754-3, J. Fixed Point Theory Appl. 22 (2020), Article ID 19, 13 pages. (2020) Zbl1442.34057MR4050175DOI10.1007/s11784-019-0754-3
  33. Oldham, K. B., Spanier, J., 10.1016/S0076-5392(09)60219-8, Mathematics in Science and Engineering 111. Academic Press, New York (1974). (1974) Zbl0292.26011MR0361633DOI10.1016/S0076-5392(09)60219-8
  34. Rabinowitz, P. H., 10.1090/cbms/065, Regional Conference Series in Mathematics 65. American Mathematical Society, Providence (1986). (1986) Zbl0609.58002MR0845785DOI10.1090/cbms/065
  35. Ricceri, B., 10.1016/S0377-0427(99)00269-1, J. Comput. Appl. Math. 113 (2000), 401-410. (2000) Zbl0946.49001MR1735837DOI10.1016/S0377-0427(99)00269-1
  36. Tian, Y., Ge, W., 10.1017/S0013091506001532, Proc. Edinb. Math. Soc., II. Ser. 51 (2008), 509-527. (2008) Zbl1163.34015MR2465922DOI10.1017/S0013091506001532
  37. Wang, G., Ahmad, B., Zhang, L., Nieto, J. J., 10.1016/j.cnsns.2013.04.003, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 401-403. (2014) Zbl07172418MR3111618DOI10.1016/j.cnsns.2013.04.003
  38. Wang, Y., Liu, Y., Cui, Y., 10.1186/s13661-018-1012-0, Bound. Value Probl. 2018 (2018), Article ID 94, 16 pages. (2018) MR3814794DOI10.1186/s13661-018-1012-0
  39. Wei, L., Agarwal, R. P., 10.1016/j.camwa.2008.01.013, Comput. Math. Appl. 56 (2008), 530-541. (2008) Zbl1155.35360MR2442671DOI10.1016/j.camwa.2008.01.013
  40. Zhao, Y., Tang, L., 10.1186/s13661-017-0855-0, Bound. Value Probl. 2017 (2017), Article ID 123, 15 pages. (2017) Zbl06767364MR3690093DOI10.1186/s13661-017-0855-0
  41. Zhou, Y., 10.1142/9069, World Scientific, Hackensack (2014). (2014) Zbl1336.34001MR3287248DOI10.1142/9069

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.