Bounded-input-bounded-state stabilization of switched processes and periodic asymptotic controllability
Kybernetika (2017)
- Volume: 53, Issue: 3, page 530-544
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBacciotti, Andrea. "Bounded-input-bounded-state stabilization of switched processes and periodic asymptotic controllability." Kybernetika 53.3 (2017): 530-544. <http://eudml.org/doc/294644>.
@article{Bacciotti2017,
abstract = {The main result of this paper is a sufficient condition for the existence of periodic switching signals which render asymptotically stable at the origin a linear switched process defined by a pair of $2\times 2$ real matrices. The interest of this result is motivated by the application to the problem of bounded-input-bounded-state (with respect to an external input) stabilization of linear switched processes.},
author = {Bacciotti, Andrea},
journal = {Kybernetika},
keywords = {switched processes; asymptotic controllability; bounded-input-bounded-state stability},
language = {eng},
number = {3},
pages = {530-544},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Bounded-input-bounded-state stabilization of switched processes and periodic asymptotic controllability},
url = {http://eudml.org/doc/294644},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Bacciotti, Andrea
TI - Bounded-input-bounded-state stabilization of switched processes and periodic asymptotic controllability
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 3
SP - 530
EP - 544
AB - The main result of this paper is a sufficient condition for the existence of periodic switching signals which render asymptotically stable at the origin a linear switched process defined by a pair of $2\times 2$ real matrices. The interest of this result is motivated by the application to the problem of bounded-input-bounded-state (with respect to an external input) stabilization of linear switched processes.
LA - eng
KW - switched processes; asymptotic controllability; bounded-input-bounded-state stability
UR - http://eudml.org/doc/294644
ER -
References
top- Bacciotti, A., 10.1016/j.ejcon.2015.09.002, Europ. J. Control 21 (2015), 22-27. MR3426567DOI10.1016/j.ejcon.2015.09.002
- Bacciotti, A., 10.14510/lm-ns.v34i1.1287, Libertas Mathematica (new series) 34 (2014), 23-46. MR3337805DOI10.14510/lm-ns.v34i1.1287
- Bacciotti, A., Mazzi, L., 10.1137/100798260, SIAM J. Control Optim. 49 (2011), 476-497. MR2784697DOI10.1137/100798260
- Brockett, R. W., 10.1137/1.9781611973884, Wiley, New York 1970. MR3486166DOI10.1137/1.9781611973884
- Ceragioli, F., 10.1016/j.na.2005.10.030, Nonlinear Analysis 65 (2006), 984-998. MR2232489DOI10.1016/j.na.2005.10.030
- Conti, R., Asymptotic control., In: Control Theory and Topics in Functional Analysis, International Atomic Energy Agency, Vienna 1976, pp. 329-360. MR0529108
- Conti, R., Linear Differential Equations and Control., Academic Press, London 1976. MR0513642
- Lin, H., Antsaklis, P. J., 10.1109/tac.2008.2012009, IEEE Trans. Automat. Control 54 (2009), 308-322. MR2491959DOI10.1109/tac.2008.2012009
- Huang, Z., Xiang, C., Lin, H., Lee, T., 10.1080/00207170903384321, Int. J. Control 83 (2010), 694-715. MR2666164DOI10.1080/00207170903384321
- Kundu, A., Chatterjee, D., Liberzon, D., 10.1016/j.automatica.2015.11.027, Automatica 64 (2016), 270-277. MR3433105DOI10.1016/j.automatica.2015.11.027
- Liberzon, D., 10.1007/978-1-4612-0017-8, Birkhäuser, Boston 2003. Zbl1036.93001MR1987806DOI10.1007/978-1-4612-0017-8
- Sontag, E. D., 10.1007/978-1-4684-0374-9, Springer-Verlag, New York 1990. Zbl0945.93001MR1070569DOI10.1007/978-1-4684-0374-9
- Sontag, E. D., 10.1109/9.28018, IEEE Trans. Automat. Control 34 (1989), 435-443. MR0987806DOI10.1109/9.28018
- Sun, Z., Ge, S. S., 10.1007/1-84628-131-8, Springer-Verlag, London 2005. DOI10.1007/1-84628-131-8
- Tokarzewski, J., 10.1080/00207728708964001, Int. J. Systems Sci. 18 (1987), 698-726. MR0880945DOI10.1080/00207728708964001
- Vu, L., Chatterjee, D., Liberzon, D., 10.1016/j.automatica.2006.10.007, Automatica 43 (2007), 639-646. MR2306707DOI10.1016/j.automatica.2006.10.007
- Feng, Wei, Zhang, JiFeng, 10.1007/s11432-008-0161-7, Science in China Series F: Information Sciences 51 (2008), 1992-2004. MR2460755DOI10.1007/s11432-008-0161-7
- Wicks, M., Peleties, P., DeCarlo, R. A., 10.1016/s0947-3580(98)70108-6, Europ. J. Control 4 (1998), 140-147. DOI10.1016/s0947-3580(98)70108-6
- Willems, J. L., Stability Theory of Dynamical Systems., Nelson, London 1970.
- Xu, X., Antsaklis, P. J., 10.1080/002071700421664, Int. J. Control 73 (2000), 1261-1279. MR1783084DOI10.1080/002071700421664
- Yang, G., Liberzon, D., 10.1109/cdc.2014.7040367, In: Proc. IEEE Conference on Decision and Control 2014 (2015), pp. 6240-6245. DOI10.1109/cdc.2014.7040367
- Yoshizawa, T., Stability Theory by Liapunov's Second Method., Publications of the Mathematical Society of Japan No. 9, 1966. MR0208086
- Wang, Yue-E, Sun, Xi-Ming, Shi, Peng, Zhao, Jun, 10.1109/tcyb.2013.2240679, IEEE Trans. Cybernetics 43 (2013), 2261-2265. DOI10.1109/tcyb.2013.2240679
- Wang, Yue-E, Sun, Xi-Ming, Wang, Wei, Zhao, Jun, 10.1002/asjc.964, Asian J. Control 17 (2015), 1187-1195. MR3373079DOI10.1002/asjc.964
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.