The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Bounded-input-bounded-state stabilization of switched processes and periodic asymptotic controllability”

Exact controllability of linear dynamical systems: A geometrical approach

María Isabel García-Planas (2017)

Applications of Mathematics

Similarity:

In recent years there has been growing interest in the descriptive analysis of complex systems, permeating many aspects of daily life, obtaining considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Concretely, for complex systems it is of interest to study the exact controllability; this measure is defined as the minimum set of controls that...

Stable periodic solutions in scalar periodic differential delay equations

Anatoli Ivanov, Sergiy Shelyag (2023)

Archivum Mathematicum

Similarity:

A class of nonlinear simple form differential delay equations with a T -periodic coefficient and a constant delay τ > 0 is considered. It is shown that for an arbitrary value of the period T > 4 τ - d 0 , for some d 0 > 0 , there is an equation in the class such that it possesses an asymptotically stable T -period solution. The periodic solutions are constructed explicitly for the piecewise constant nonlinearities and the periodic coefficients involved, by reduction of the problem to one-dimensional maps. The...

On the solution set of the nonconvex sweeping process

Andrea Gavioli (1999)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We prove that the solutions of a sweeping process make up an R δ -set under the following assumptions: the moving set C(t) has a lipschitzian retraction and, in the neighbourhood of each point x of its boundary, it can be seen as the epigraph of a lipschitzian function, in such a way that the diameter of the neighbourhood and the related Lipschitz constant do not depend on x and t. An application to the existence of periodic solutions is given.

A remarkable σ -finite measure unifying supremum penalisations for a stable Lévy process

Yuko Yano (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

The σ -finite measure 𝒫 sup which unifies supremum penalisations for a stable Lévy process is introduced. Silverstein’s coinvariant and coharmonic functions for Lévy processes and Chaumont’s h -transform processes with respect to these functions are utilized for the construction of 𝒫 sup .

Null controllability of Grushin-type operators in dimension two

Karine Beauchard, Piermarco Cannarsa, Roberto Guglielmi (2014)

Journal of the European Mathematical Society

Similarity:

We study the null controllability of the parabolic equation associated with the Grushin-type operator A = x 2 + x 2 γ γ 2 , ( γ > 0 ) , in the rectangle Ω = ( - 1 , 1 ) × ( 0 , 1 ) , under an additive control supported in an open subset ω of Ω . We prove that the equation is null controllable in any positive time for γ < 1 and that there is no time for which it is null controllable for γ > 1 . In the transition regime γ = 1 and when ω is a strip ω = ( a , b ) × ( 0 , 1 ) ( 0 < a , b 1 ) ), a positive minimal time is required for null controllability. Our approach is based on the fact that, thanks...

On Paszkiewicz-type criterion for a.e. continuity of processes in L p -spaces

Jakub Olejnik (2010)

Banach Center Publications

Similarity:

In this paper we consider processes Xₜ with values in L p , p ≥ 1 on subsets T of a unit cube in ℝⁿ satisfying a natural condition of boundedness of increments, i.e. a process has bounded increments if for some non-decreasing f: ℝ₊ → ℝ₊ ||Xₜ-Xₛ||ₚ ≤ f(||t-s||), s,t ∈ T. We give a sufficient criterion for a.s. continuity of all processes with bounded increments on subsets of a given set T. This criterion turns out to be necessary for a wide class of functions f. We use a geometrical Paszkiewicz-type...

The asymptotic behavior of fragmentation processes

Jean Bertoin (2003)

Journal of the European Mathematical Society

Similarity:

The fragmentation processes considered in this work are self-similar Markov processes which are meant to describe the evolution of a mass that falls apart randomly as time passes. We investigate their pathwise asymptotic behavior as t . In the so-called homogeneous case, we first point at a law of large numbers and a central limit theorem for (a modified version of) the empirical distribution of the fragments at time t . These results are reminiscent of those of Asmussen and Kaplan [3]...

New results on stability of periodic solution for CNNs with proportional delays and D operator

Bo Du (2019)

Kybernetika

Similarity:

The problems related to periodic solutions of cellular neural networks (CNNs) involving D operator and proportional delays are considered. We shall present Topology degree theory and differential inequality technique for obtaining the existence of periodic solution to the considered neural networks. Furthermore, Laypunov functional method is used for studying global asymptotic stability of periodic solutions to the above system.

Steady state in a biological system: global asymptotic stability

Maria Adelaide Sneider (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

A suitable Liapunov function is constructed for proving that the unique critical point of a non-linear system of ordinary differential equations, considered in a well determined polyhedron K , is globally asymptotically stable in K . The analytic problem arises from an investigation concerning a steady state in a particular macromolecular system: the visual system represented by the pigment rhodopsin in the presence of light.

QMLE of periodic bilinear models and of PARMA models with periodic bilinear innovations

Abdelouahab Bibi, Ahmed Ghezal (2018)

Kybernetika

Similarity:

This paper develops an asymptotic inference theory for bilinear B L time series models with periodic coefficients P B L for short . For this purpose, we establish firstly a necessary and sufficient conditions for such models to have a unique stationary and ergodic solutions (in periodic sense). Secondly, we examine the consistency and the asymptotic normality of the quasi-maximum likelihood estimator Q M L E under very mild moment condition for the innovation errors. As a result, it is shown that whenever...

Steady state in a biological system: global asymptotic stability

Maria Adelaide Sneider (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

A suitable Liapunov function is constructed for proving that the unique critical point of a non-linear system of ordinary differential equations, considered in a well determined polyhedron K , is globally asymptotically stable in K . The analytic problem arises from an investigation concerning a steady state in a particular macromolecular system: the visual system represented by the pigment rhodopsin in the presence of light.

Stationary distributions for jump processes with memory

K. Burdzy, T. Kulczycki, R. L. Schilling (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We analyze a jump processes Z with a jump measure determined by a “memory” process S . The state space of ( Z , S ) is the Cartesian product of the unit circle and the real line. We prove that the stationary distribution of ( Z , S ) is the product of the uniform probability measure and a Gaussian distribution.

Generalized c -almost periodic type functions in n

M. Kostić (2021)

Archivum Mathematicum

Similarity:

In this paper, we analyze multi-dimensional quasi-asymptotically c -almost periodic functions and their Stepanov generalizations as well as multi-dimensional Weyl c -almost periodic type functions. We also analyze several important subclasses of the class of multi-dimensional quasi-asymptotically c -almost periodic functions and reconsider the notion of semi- c -periodicity in the multi-dimensional setting, working in the general framework of Lebesgue spaces with variable exponent. We provide...

Small positive values for supercritical branching processes in random environment

Vincent Bansaye, Christian Böinghoff (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Branching Processes in Random Environment (BPREs) ( Z n : n 0 ) are the generalization of Galton–Watson processes where in each generation the reproduction law is picked randomly in an i.i.d. manner. In the supercritical case, the process survives with positive probability and then almost surely grows geometrically. This paper focuses on rare events when the process takes positive but small values for large times. We describe the asymptotic behavior of ( 1 Z n k | Z 0 = i ) , k , i as n . More precisely, we characterize...

An asymptotic test for Quantitative Trait Locus detection in presence of missing genotypes

Charles-Elie Rabier (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We consider the likelihood ratio test (LRT) process related to the test of the absence of QTL (a QTL denotes a quantitative trait locus, i.e. a gene with quantitative effect on a trait) on the interval [ 0 , T ] representing a chromosome. The originality is in the fact that some genotypes are missing. We give the asymptotic distribution of this LRT process under the null hypothesis that there is no QTL on [ 0 , T ] and under local alternatives with a QTL at t on [ 0 , T ] . We show that the LRT process is asymptotically...

Stability of periodic stationary solutions of scalar conservation laws with space-periodic flux

Anne-Laure Dalibard (2011)

Journal of the European Mathematical Society

Similarity:

This article investigates the long-time behaviour of parabolic scalar conservation laws of the type t u + div y A ( y , u ) - Δ y u = 0 , where y N and the flux A is periodic in y . More specifically, we consider the case when the initial data is an L 1 disturbance of a stationary periodic solution. We show, under polynomial growth assumptions on the flux, that the difference between u and the stationary solution behaves in L 1 norm like a self-similar profile for large times. The proof uses a time and space change of variables...

Existence and uniqueness of periodic solutions for odd-order ordinary differential equations

Yongxiang Li, He Yang (2011)

Annales Polonici Mathematici

Similarity:

The paper deals with the existence and uniqueness of 2π-periodic solutions for the odd-order ordinary differential equation u ( 2 n + 1 ) = f ( t , u , u ' , . . . , u ( 2 n ) ) , where f : × 2 n + 1 is continuous and 2π-periodic with respect to t. Some new conditions on the nonlinearity f ( t , x , x , . . . , x 2 n ) to guarantee the existence and uniqueness are presented. These conditions extend and improve the ones presented by Cong [Appl. Math. Lett. 17 (2004), 727-732].

Theorem-proving systems

Ewa Orłowska

Similarity:

CONTENTSIntroduction.................................................................................................................... 6Chapter I. Theorem-proving system§ 1. Theory...................................................................................................................... 7§ 2. Fundamental theory T ƒ ................................................................................ 8§ 3. Theorem-proving system.......................................................................................