On a sequence formed by iterating a divisor operator

Bellaouar Djamel; Boudaoud Abdelmadjid; Özen Özer

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 4, page 1177-1196
  • ISSN: 0011-4642

Abstract

top
Let be the set of positive integers and let s . We denote by d s the arithmetic function given by d s ( n ) = ( d ( n ) ) s , where d ( n ) is the number of positive divisors of n . Moreover, for every , m we denote by δ s , , m ( n ) the sequence d s ( d s ( ... d s ( d s ( n ) + ) + ... ) + ) m -times = d s ( n ) for m = 1 , d s ( d s ( n ) + ) for m = 2 , d s ( d s ( d s ( n ) + ) + ) for m = 3 , We present classical and nonclassical notes on the sequence ( δ s , , m ( n ) ) m 1 , where , n , s are understood as parameters.

How to cite

top

Djamel, Bellaouar, Abdelmadjid, Boudaoud, and Özer, Özen. "On a sequence formed by iterating a divisor operator." Czechoslovak Mathematical Journal 69.4 (2019): 1177-1196. <http://eudml.org/doc/294676>.

@article{Djamel2019,
abstract = {Let $\mathbb \{N\}$ be the set of positive integers and let $s\in \mathbb \{N\}$. We denote by $d^\{s\}$ the arithmetic function given by $ d^\{s\}( n) =( d( n) ) ^\{s\}$, where $d(n)$ is the number of positive divisors of $n$. Moreover, for every $\ell ,m\in \mathbb \{N\}$ we denote by $\delta ^\{s,\ell ,m\}( n) $ the sequence \[ \underbrace\{d^\{s\}( d^\{s\}( \ldots d^\{s\}( d^\{s\}( n) +\ell ) +\ell \ldots ) +\ell ) \}\_\{m\text\{-times\}\} =\{\left\lbrace \begin\{array\}\{ll\} d^\{s\}( n) & \text\{for\} \ m=1,\\ d^\{s\}( d^\{s\}( n) +\ell ) &\text\{for\} \ m=2,\\ d^\{s\}(d^\{s\}( d^\{s\}(n) +\ell ) +\ell ) & \text\{for\} \ m=3, \\ \vdots & \end\{array\}\right.\} \] We present classical and nonclassical notes on the sequence $ ( \delta ^\{s,\ell ,m\}( n)) _\{m\ge 1\}$, where $\ell $, $n$, $s$ are understood as parameters.},
author = {Djamel, Bellaouar, Abdelmadjid, Boudaoud, Özer, Özen},
journal = {Czechoslovak Mathematical Journal},
keywords = {divisor function; prime number; iterated sequence; internal set theory},
language = {eng},
number = {4},
pages = {1177-1196},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a sequence formed by iterating a divisor operator},
url = {http://eudml.org/doc/294676},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Djamel, Bellaouar
AU - Abdelmadjid, Boudaoud
AU - Özer, Özen
TI - On a sequence formed by iterating a divisor operator
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 1177
EP - 1196
AB - Let $\mathbb {N}$ be the set of positive integers and let $s\in \mathbb {N}$. We denote by $d^{s}$ the arithmetic function given by $ d^{s}( n) =( d( n) ) ^{s}$, where $d(n)$ is the number of positive divisors of $n$. Moreover, for every $\ell ,m\in \mathbb {N}$ we denote by $\delta ^{s,\ell ,m}( n) $ the sequence \[ \underbrace{d^{s}( d^{s}( \ldots d^{s}( d^{s}( n) +\ell ) +\ell \ldots ) +\ell ) }_{m\text{-times}} ={\left\lbrace \begin{array}{ll} d^{s}( n) & \text{for} \ m=1,\\ d^{s}( d^{s}( n) +\ell ) &\text{for} \ m=2,\\ d^{s}(d^{s}( d^{s}(n) +\ell ) +\ell ) & \text{for} \ m=3, \\ \vdots & \end{array}\right.} \] We present classical and nonclassical notes on the sequence $ ( \delta ^{s,\ell ,m}( n)) _{m\ge 1}$, where $\ell $, $n$, $s$ are understood as parameters.
LA - eng
KW - divisor function; prime number; iterated sequence; internal set theory
UR - http://eudml.org/doc/294676
ER -

References

top
  1. Bellaouar, D., Notes on certain arithmetic inequalities involving two consecutive primes, Malays. J. Math. Sci. 10 (2016), 253-268. (2016) MR3583217
  2. Bellaouar, D., Boudaoud, A., Non-classical study on the simultaneous rational approximation, Malays. J. Math. Sci. 9 (2015), 209-225. (2015) MR3350181
  3. Boudaoud, A., /10.5802/ambp.215, Ann. Math. Blaise Pascal 13 (2006), 103-109 French. (2006) Zbl1172.11307MR2233013DOI/10.5802/ambp.215
  4. Boudaoud, A., 10.4115/jla.2009.1.4, J. Log. Anal. 1 (2009), Article 4, 23 pages. (2009) Zbl1177.11015MR2501375DOI10.4115/jla.2009.1.4
  5. Koninck, J.-M. De, Mercier, A., 1001 problems in classical number theory, Ellipses, Paris (2004), French. (2004) Zbl1109.11001MR2302879
  6. Diener, F., (eds.), M. Diener, 10.1007/978-3-642-57758-1, Universitext, Springer, Berlin (1995). (1995) Zbl0848.26015MR1396794DOI10.1007/978-3-642-57758-1
  7. Diener, F., Reeb, G., Analyse Non Standard, Enseignement des Sciences 40, Hermann, Paris (1989), French. (1989) Zbl0682.26010MR1026099
  8. Erdős, P., Kátai, I., On the growth of d k ( n ) , Fibonacci Q. 7 (1969), 267-274. (1969) Zbl0188.34102MR0252338
  9. Jin, R., 10.1090/s0002-9947-02-03122-7, Trans. Am. Math. Soc. 355 (2003), 57-78. (2003) Zbl1077.11007MR1928077DOI10.1090/s0002-9947-02-03122-7
  10. Kanovei, V., Reeken, M., 10.1007/978-3-662-08998-9, Springer Monographs in Mathematics, Springer, Berlin (2004). (2004) Zbl1058.03002MR2093998DOI10.1007/978-3-662-08998-9
  11. Nathanson, M. B., 10.1007/b98870, Graduate Texts in Mathematics 195, Springer, New York (2000). (2000) Zbl0953.11002MR1732941DOI10.1007/b98870
  12. Nelson, E., 10.1090/s0002-9904-1977-14398-x, Bull. Am. Math. Soc. 83 (1977), 1165-1198. (1977) Zbl0373.02040MR0469763DOI10.1090/s0002-9904-1977-14398-x
  13. Ramanujan, S., 10.1112/plms/s2_14.1.347, Lond. M. S. Proc. (2) 14 (1915), 347-409 9999JFM99999 45.1248.01. (1915) MR2280858DOI10.1112/plms/s2_14.1.347
  14. Robinson, A., Non-standard Analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton (1974). (1974) Zbl0843.26012MR1373196
  15. Berg, I. P. Van den, 10.1016/0168-0072(92)90035-x, Ann. Pure Appl. Logic 58 (1992), 73-92. (1992) Zbl0777.03019MR1169787DOI10.1016/0168-0072(92)90035-x
  16. Berg, I. P. Van den, (eds.), V. Neves, 10.1007/978-3-211-49905-4, Springer, Wien (2007). (2007) Zbl1117.03074MR2348897DOI10.1007/978-3-211-49905-4
  17. Wells, D., Prime Numbers: The Most Mysterious Figures in Math, Wiley, Hoboken (2005). (2005) 
  18. Yan, S. Y., 10.1007/978-3-662-04773-6, Springer, Berlin (2002). (2002) Zbl1010.11001MR2056446DOI10.1007/978-3-662-04773-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.