On a sequence formed by iterating a divisor operator
Bellaouar Djamel; Boudaoud Abdelmadjid; Özen Özer
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 4, page 1177-1196
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDjamel, Bellaouar, Abdelmadjid, Boudaoud, and Özer, Özen. "On a sequence formed by iterating a divisor operator." Czechoslovak Mathematical Journal 69.4 (2019): 1177-1196. <http://eudml.org/doc/294676>.
@article{Djamel2019,
abstract = {Let $\mathbb \{N\}$ be the set of positive integers and let $s\in \mathbb \{N\}$. We denote by $d^\{s\}$ the arithmetic function given by $ d^\{s\}( n) =( d( n) ) ^\{s\}$, where $d(n)$ is the number of positive divisors of $n$. Moreover, for every $\ell ,m\in \mathbb \{N\}$ we denote by $\delta ^\{s,\ell ,m\}( n) $ the sequence \[ \underbrace\{d^\{s\}( d^\{s\}( \ldots d^\{s\}( d^\{s\}( n) +\ell ) +\ell \ldots ) +\ell ) \}\_\{m\text\{-times\}\} =\{\left\lbrace \begin\{array\}\{ll\} d^\{s\}( n) & \text\{for\} \ m=1,\\ d^\{s\}( d^\{s\}( n) +\ell ) &\text\{for\} \ m=2,\\ d^\{s\}(d^\{s\}( d^\{s\}(n) +\ell ) +\ell ) & \text\{for\} \ m=3, \\ \vdots & \end\{array\}\right.\} \]
We present classical and nonclassical notes on the sequence $ ( \delta ^\{s,\ell ,m\}( n)) _\{m\ge 1\}$, where $\ell $, $n$, $s$ are understood as parameters.},
author = {Djamel, Bellaouar, Abdelmadjid, Boudaoud, Özer, Özen},
journal = {Czechoslovak Mathematical Journal},
keywords = {divisor function; prime number; iterated sequence; internal set theory},
language = {eng},
number = {4},
pages = {1177-1196},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a sequence formed by iterating a divisor operator},
url = {http://eudml.org/doc/294676},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Djamel, Bellaouar
AU - Abdelmadjid, Boudaoud
AU - Özer, Özen
TI - On a sequence formed by iterating a divisor operator
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 1177
EP - 1196
AB - Let $\mathbb {N}$ be the set of positive integers and let $s\in \mathbb {N}$. We denote by $d^{s}$ the arithmetic function given by $ d^{s}( n) =( d( n) ) ^{s}$, where $d(n)$ is the number of positive divisors of $n$. Moreover, for every $\ell ,m\in \mathbb {N}$ we denote by $\delta ^{s,\ell ,m}( n) $ the sequence \[ \underbrace{d^{s}( d^{s}( \ldots d^{s}( d^{s}( n) +\ell ) +\ell \ldots ) +\ell ) }_{m\text{-times}} ={\left\lbrace \begin{array}{ll} d^{s}( n) & \text{for} \ m=1,\\ d^{s}( d^{s}( n) +\ell ) &\text{for} \ m=2,\\ d^{s}(d^{s}( d^{s}(n) +\ell ) +\ell ) & \text{for} \ m=3, \\ \vdots & \end{array}\right.} \]
We present classical and nonclassical notes on the sequence $ ( \delta ^{s,\ell ,m}( n)) _{m\ge 1}$, where $\ell $, $n$, $s$ are understood as parameters.
LA - eng
KW - divisor function; prime number; iterated sequence; internal set theory
UR - http://eudml.org/doc/294676
ER -
References
top- Bellaouar, D., Notes on certain arithmetic inequalities involving two consecutive primes, Malays. J. Math. Sci. 10 (2016), 253-268. (2016) MR3583217
- Bellaouar, D., Boudaoud, A., Non-classical study on the simultaneous rational approximation, Malays. J. Math. Sci. 9 (2015), 209-225. (2015) MR3350181
- Boudaoud, A., /10.5802/ambp.215, Ann. Math. Blaise Pascal 13 (2006), 103-109 French. (2006) Zbl1172.11307MR2233013DOI/10.5802/ambp.215
- Boudaoud, A., 10.4115/jla.2009.1.4, J. Log. Anal. 1 (2009), Article 4, 23 pages. (2009) Zbl1177.11015MR2501375DOI10.4115/jla.2009.1.4
- Koninck, J.-M. De, Mercier, A., 1001 problems in classical number theory, Ellipses, Paris (2004), French. (2004) Zbl1109.11001MR2302879
- Diener, F., (eds.), M. Diener, 10.1007/978-3-642-57758-1, Universitext, Springer, Berlin (1995). (1995) Zbl0848.26015MR1396794DOI10.1007/978-3-642-57758-1
- Diener, F., Reeb, G., Analyse Non Standard, Enseignement des Sciences 40, Hermann, Paris (1989), French. (1989) Zbl0682.26010MR1026099
- Erdős, P., Kátai, I., On the growth of , Fibonacci Q. 7 (1969), 267-274. (1969) Zbl0188.34102MR0252338
- Jin, R., 10.1090/s0002-9947-02-03122-7, Trans. Am. Math. Soc. 355 (2003), 57-78. (2003) Zbl1077.11007MR1928077DOI10.1090/s0002-9947-02-03122-7
- Kanovei, V., Reeken, M., 10.1007/978-3-662-08998-9, Springer Monographs in Mathematics, Springer, Berlin (2004). (2004) Zbl1058.03002MR2093998DOI10.1007/978-3-662-08998-9
- Nathanson, M. B., 10.1007/b98870, Graduate Texts in Mathematics 195, Springer, New York (2000). (2000) Zbl0953.11002MR1732941DOI10.1007/b98870
- Nelson, E., 10.1090/s0002-9904-1977-14398-x, Bull. Am. Math. Soc. 83 (1977), 1165-1198. (1977) Zbl0373.02040MR0469763DOI10.1090/s0002-9904-1977-14398-x
- Ramanujan, S., 10.1112/plms/s2_14.1.347, Lond. M. S. Proc. (2) 14 (1915), 347-409 9999JFM99999 45.1248.01. (1915) MR2280858DOI10.1112/plms/s2_14.1.347
- Robinson, A., Non-standard Analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton (1974). (1974) Zbl0843.26012MR1373196
- Berg, I. P. Van den, 10.1016/0168-0072(92)90035-x, Ann. Pure Appl. Logic 58 (1992), 73-92. (1992) Zbl0777.03019MR1169787DOI10.1016/0168-0072(92)90035-x
- Berg, I. P. Van den, (eds.), V. Neves, 10.1007/978-3-211-49905-4, Springer, Wien (2007). (2007) Zbl1117.03074MR2348897DOI10.1007/978-3-211-49905-4
- Wells, D., Prime Numbers: The Most Mysterious Figures in Math, Wiley, Hoboken (2005). (2005)
- Yan, S. Y., 10.1007/978-3-662-04773-6, Springer, Berlin (2002). (2002) Zbl1010.11001MR2056446DOI10.1007/978-3-662-04773-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.