Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum

Muhammad Idrees; Shah Muhammad; Saif Ullah

Kybernetika (2019)

  • Volume: 55, Issue: 3, page 455-471
  • ISSN: 0023-5954

Abstract

top
The rotary inverted pendulum (RIP) system is one of the fundamental, nonlinear, unstable and interesting benchmark systems in the field of control theory. In this paper, two nonlinear control strategies, namely hierarchical sliding mode control (HSMC) and decoupled sliding mode control (DSMC), are discussed to address the stabilization problem of the RIP system. We introduced HSMC with state-dependent switching gain for stabilization of the RIP system. Numerical simulations are performed to analyze the performance of the hierarchical sliding mode controllers with the decoupled sliding mode controller and the controller obtained from the pole placement technique. We proposed HSMC with state-dependent switching gain as it shows better performance as compared to HSMC with constant switching gain, DSMC, and the state feedback controller based on pole placement technique. The stability analysis of proposed HSMC is also discussed by using Lyapunov stability theory.

How to cite

top

Idrees, Muhammad, Muhammad, Shah, and Ullah, Saif. "Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum." Kybernetika 55.3 (2019): 455-471. <http://eudml.org/doc/294702>.

@article{Idrees2019,
abstract = {The rotary inverted pendulum (RIP) system is one of the fundamental, nonlinear, unstable and interesting benchmark systems in the field of control theory. In this paper, two nonlinear control strategies, namely hierarchical sliding mode control (HSMC) and decoupled sliding mode control (DSMC), are discussed to address the stabilization problem of the RIP system. We introduced HSMC with state-dependent switching gain for stabilization of the RIP system. Numerical simulations are performed to analyze the performance of the hierarchical sliding mode controllers with the decoupled sliding mode controller and the controller obtained from the pole placement technique. We proposed HSMC with state-dependent switching gain as it shows better performance as compared to HSMC with constant switching gain, DSMC, and the state feedback controller based on pole placement technique. The stability analysis of proposed HSMC is also discussed by using Lyapunov stability theory.},
author = {Idrees, Muhammad, Muhammad, Shah, Ullah, Saif},
journal = {Kybernetika},
keywords = {rotary inverted pendulum; sliding mode control; dynamical systems},
language = {eng},
number = {3},
pages = {455-471},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum},
url = {http://eudml.org/doc/294702},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Idrees, Muhammad
AU - Muhammad, Shah
AU - Ullah, Saif
TI - Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 3
SP - 455
EP - 471
AB - The rotary inverted pendulum (RIP) system is one of the fundamental, nonlinear, unstable and interesting benchmark systems in the field of control theory. In this paper, two nonlinear control strategies, namely hierarchical sliding mode control (HSMC) and decoupled sliding mode control (DSMC), are discussed to address the stabilization problem of the RIP system. We introduced HSMC with state-dependent switching gain for stabilization of the RIP system. Numerical simulations are performed to analyze the performance of the hierarchical sliding mode controllers with the decoupled sliding mode controller and the controller obtained from the pole placement technique. We proposed HSMC with state-dependent switching gain as it shows better performance as compared to HSMC with constant switching gain, DSMC, and the state feedback controller based on pole placement technique. The stability analysis of proposed HSMC is also discussed by using Lyapunov stability theory.
LA - eng
KW - rotary inverted pendulum; sliding mode control; dynamical systems
UR - http://eudml.org/doc/294702
ER -

References

top
  1. Antonio-Toledo, M. E., Sanchez, E. N., Alanis, A. Y., Florez, J., Perez-Cisneros, M. A., 10.1016/j.ifacol.2018.07.337, IFAC-Papers Online 51 (2018), 549-554. DOI10.1016/j.ifacol.2018.07.337
  2. Butt, Y. A., 10.1016/j.aej.2017.05.017, Alexandria Engrg. J. 57 (2018), 1591-1596. DOI10.1016/j.aej.2017.05.017
  3. Baker, G. J., Blackburn, J. A., The Pendulum: A Case Study in Physics., Oxford University Press, New York 2002. MR2155144
  4. Chen, Y. F., Huang, A. C., 10.1007/s11071-013-1112-4, Nonlinear Dynamics 76 (2014), 95-102. MR3189156DOI10.1007/s11071-013-1112-4
  5. Choi, J. J., Kim, J. S., 10.1007/bf02982326, KSME Int. J. 17 (2003), 1466-1474. DOI10.1007/bf02982326
  6. Coban, R., Ata, B., 10.1109/aim.2017.8014148, In: IEEE International Conference on Advanced Intelligent Mechatronics, Germany 2017. DOI10.1109/aim.2017.8014148
  7. Furuta, K., Yamakita, M., Kobayashi, S., 10.1243/pime_proc_1992_206_341_02, J. Systems Control Engrg. 206 (1992), 263-269. DOI10.1243/pime_proc_1992_206_341_02
  8. Gao, W., Hung, J. C., 10.1109/41.184820, IEEE Trans. Industr. Electronics 40 (1993), 45-55. MR3860982DOI10.1109/41.184820
  9. Grasser, F., DArrigo, A., Colombi, S., Rufer, A. C., 10.1109/41.982254, IEEE Trans. Industr. Electron. 49 (2002), 107-114. DOI10.1109/41.982254
  10. Hassanzadeh, I., Mobayen, S., 10.1155/2011/572424, Math. Problems Engrg. 2011 (2011), 1-17. DOI10.1155/2011/572424
  11. Irfan, J., Rehan, J., Zhao, J., Rizwan, J., Abdus, S., Mathematical model analysis and control algorithms design based on state feedback method of rotary inverted pendulum., Int. J. Research Engrg. Technol. 1 (2013), 41-50. 
  12. Jia, Z., Yu, J., Mei, Y., Chen, Y., Shen, Y., Ai, X., 10.1016/j.ast.2017.05.022, Aerospace Science Technol. 68 (2017), 299-307. DOI10.1016/j.ast.2017.05.022
  13. Jadlovska, S., Sarnovsky, J., 10.2478/jee-2013-0002, J. Electr. Engrg. 64 (2013), 12-19. DOI10.2478/jee-2013-0002
  14. Jose, A., Augustine, C., Malola, S. M., Chacko, K., 10.4236/wjet.2015.32008, World J. Engrg. Technol. 3 (2015), 76-81. DOI10.4236/wjet.2015.32008
  15. Kchaou, A., Naamane, A., Koubaa, Y., M'sirdi, N., 10.1016/j.solener.2017.07.007, Solar Energy 155 (2017), 758-769. DOI10.1016/j.solener.2017.07.007
  16. Kaynak, O., Erbatur, K., Ertugrul, M., 10.1109/41.904539, IEEE Trans. Industr. Electron. 48 (2001), 4-17. DOI10.1109/41.904539
  17. Kurode, S., Chalanga, A., Bandyopadhyay, B., 10.3182/20110828-6-it-1002.02933, In: Preprints of the 18th IFAC World Congress, Milano 2011. DOI10.3182/20110828-6-it-1002.02933
  18. Khanesar, M. A., Teshnehlab, M., Shoorehdeli, M. A., 10.1109/icccyb.2007.4402019, In: Proc. 5th IEEE International Conference on Computational Cybernetics, Tunisia 2007. DOI10.1109/icccyb.2007.4402019
  19. Khanesar, M. A., Teshnehlab, M., Shoorehdeli, M. A., 10.1109/med.2007.4433653, In: Proc. 15th Mediterannean Conference on Control and Automation, Greece 2007. DOI10.1109/med.2007.4433653
  20. Liu, X., Vargas, A. N., Yu, X., Xu, L., 10.1016/j.jfranklin.2017.07.015, J. Franklin Inst. 354 (2017), 5813-5824. MR3692085DOI10.1016/j.jfranklin.2017.07.015
  21. Lu, B., Fang, Y., Sun, N., 10.1016/j.mechatronics.2017.09.006, Mechatronics 47 (2017), 116-125. DOI10.1016/j.mechatronics.2017.09.006
  22. Lin, X., Nie, J., Jiao, Y., Liang, K., Li, H., 10.1016/j.apor.2018.01.015, Appl. Ocean Res. 74 (2018), 40-48. DOI10.1016/j.apor.2018.01.015
  23. Lo, J. C., Kuo, Y. H., 10.1109/91.705510, IEEE Trans. Fuzzy Systems 6 (1998), 426-435. DOI10.1109/91.705510
  24. Muskinja, N., Tovornik, B., 10.1109/tie.2006.870667, IEEE Trans. Industr. Electron. 53 (2006), 631-639. DOI10.1109/tie.2006.870667
  25. Mei, H., He, Z., 10.1109/mace.2010.5536653, In: Proc. International Conference on Mechanic Automation and Control Engineering, Wuhan 2010. DOI10.1109/mace.2010.5536653
  26. Mon, Y. J., Lin, C. M., 10.1109/fuzz.2002.1005070, In: Proc. IEEE International Conference on Fuzzy Systems, Greece 2002. DOI10.1109/fuzz.2002.1005070
  27. Ngo, Q. H., Nguyen, N. P., Nguyen, C. N., Tran, T. H., Ha, Q. P., 10.1016/j.oceaneng.2017.05.019, Ocean Engrg. 140 (2017), 125-134. DOI10.1016/j.oceaneng.2017.05.019
  28. Nagarale, R., Patre, B., 10.1109/fuzz-ieee.2013.6622321, In: IEEE International Conference on Fuzzy Systems, Hyderabad 2013. DOI10.1109/fuzz-ieee.2013.6622321
  29. Oltean, S. E., 10.1016/j.protcy.2013.12.456, Procedia Technol. 12 (2014), 57-64. DOI10.1016/j.protcy.2013.12.456
  30. Phuong, N., Loc, H., Tuan, T., Control of two wheeled inverted pendulum using sliding mode technique., Int. J. Engrg. Res. Appl. 3 (2013), 1276-1282. 
  31. Perruquetti, W., Barbot, J. P., 10.1201/9780203910856, CRC Press, 2002. DOI10.1201/9780203910856
  32. Qian, D., Yi, J., 10.1007/978-3-662-48417-3, Springer-Verlag, Berlin 2015. MR3408614DOI10.1007/978-3-662-48417-3
  33. Qureshi, M. S., Swarnkar, P., Gupta, S., 10.1016/j.robot.2018.08.008, Robotics Autonom. Systems 109 (2018), 68-85. DOI10.1016/j.robot.2018.08.008
  34. Qian, D., Yi, J., Zhao, D., Hierarchical sliding mode control for a class of simo under-actuated systems., Control Cybernet. 37 (2008), 159-175. MR2440728
  35. Qian, D., Yi, J., Zhao, D., Hao, Y., 10.1109/iros.2006.282521, In: Proc. International Conference on Intelligent Robots and Systems, Beijing 2006. DOI10.1109/iros.2006.282521
  36. Song, Z., Sun, K., Ling, S., 10.1016/j.isatra.2017.02.013, ISA Trans. 68 (2017), 353-366. DOI10.1016/j.isatra.2017.02.013
  37. Solanes, J. E., Gracia, L., Munoz-Benavent, P., Miro, J. V., Girbes, V., Tornero, J., 10.1016/j.isatra.2018.05.013, ISA Trans. 80 (2018), 528-541. DOI10.1016/j.isatra.2018.05.013
  38. Slotine, J. J. E., 10.1080/00207178408933284, Int. J. Control 40 (1984), 421-434. DOI10.1080/00207178408933284
  39. Sirisha, V., Junghare, A. S., 10.5121/ijccms.2014.3201, Int. J. Chaos, Control, Modell. Simul. 3 (2014), 1-13. DOI10.5121/ijccms.2014.3201
  40. Slotine, J. J. E., Li, W., Applied Nonlinear Control., Prentice Hall International Inc., 1991. Zbl0753.93036
  41. Tapia, A., Bernal, M., Fridman, L., 10.1016/j.sysconle.2017.03.011, Systems Control Lett. 104 (2017), 38-44. MR3652391DOI10.1016/j.sysconle.2017.03.011
  42. Tuan, L. A., Lee, S. G., Nho, L. C., Cuong, H. M., 10.1177/0959651815573903, Proc. Inst. Mechan. Engineers, Part I: J. Systems Control Engrg. 229 (2015), 662-674. DOI10.1177/0959651815573903
  43. Tuan, L. A., Cuong, H. M., Lee, S. G., Nho, L. C., Moon, K., 10.1177/1077546314558499, J. Vibration Control 22 (2016), 3067-3078. MR3527669DOI10.1177/1077546314558499
  44. Utkin, V. I., Korovin, S. K., Application of sliding mode to static optimization., Automatic Remote Control 4 (1972), 570-579. MR0738683
  45. Utkin, V. I., Yagn, K. D., Methods for construction of discontinuity planes in multidimensional variable structure systems., Automat. Remote Control 39 (1978), 72-77. MR0533368
  46. Utkin, V. I., Yagn, K. D., 10.1109/tac.1977.1101446, IEEE Trans. Automat. Control 22 (1997), 212-222. MR0484664DOI10.1109/tac.1977.1101446
  47. Utkin, V. I., Guldner, J., Shi, J., 10.1201/9781420065619, CRC Press, 2009. MR2455618DOI10.1201/9781420065619
  48. Wu, Y. J., Li, G. F., 10.1016/j.ymssp.2017.05.007, Mechan. Systems Signal Process. 98 (2018), 402-414. DOI10.1016/j.ymssp.2017.05.007
  49. Wu, A., Zhang, X., Zhang, Z., A control system based on the Lagrange modeling method for a single link rotary inverted pendulum., Engrg. Sci. 7 (2005), 11-15. 
  50. Wen, J., Shi, Y., Lu, X., 10.1155/2017/4091302, J. Control Science Engrg. 2017 (2017), 1-11. MR3622180DOI10.1155/2017/4091302
  51. Yigit, I., 10.1177/1077546315598031, J. Vibration Control 23 (2017), 1645-1662. MR3659607DOI10.1177/1077546315598031
  52. Yue, M., An, C., Du, Y., Sun, J., 10.1016/j.fss.2015.08.013, Fuzzy Sets Systems 290 (2016), 158-177. MR3460256DOI10.1016/j.fss.2015.08.013
  53. Zhang, J., Zhang, Q., Wang, Y., 10.1016/j.ins.2017.02.005, Inform. Sci. 391 (2017), 9-27. DOI10.1016/j.ins.2017.02.005
  54. Zhao, Y., Huang, P., Zhang, F., 10.1016/j.actaastro.2017.11.025, Acta Astronautica 143 (2018), 310-321. DOI10.1016/j.actaastro.2017.11.025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.