Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum
Muhammad Idrees; Shah Muhammad; Saif Ullah
Kybernetika (2019)
- Volume: 55, Issue: 3, page 455-471
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topIdrees, Muhammad, Muhammad, Shah, and Ullah, Saif. "Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum." Kybernetika 55.3 (2019): 455-471. <http://eudml.org/doc/294702>.
@article{Idrees2019,
abstract = {The rotary inverted pendulum (RIP) system is one of the fundamental, nonlinear, unstable and interesting benchmark systems in the field of control theory. In this paper, two nonlinear control strategies, namely hierarchical sliding mode control (HSMC) and decoupled sliding mode control (DSMC), are discussed to address the stabilization problem of the RIP system. We introduced HSMC with state-dependent switching gain for stabilization of the RIP system. Numerical simulations are performed to analyze the performance of the hierarchical sliding mode controllers with the decoupled sliding mode controller and the controller obtained from the pole placement technique. We proposed HSMC with state-dependent switching gain as it shows better performance as compared to HSMC with constant switching gain, DSMC, and the state feedback controller based on pole placement technique. The stability analysis of proposed HSMC is also discussed by using Lyapunov stability theory.},
author = {Idrees, Muhammad, Muhammad, Shah, Ullah, Saif},
journal = {Kybernetika},
keywords = {rotary inverted pendulum; sliding mode control; dynamical systems},
language = {eng},
number = {3},
pages = {455-471},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum},
url = {http://eudml.org/doc/294702},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Idrees, Muhammad
AU - Muhammad, Shah
AU - Ullah, Saif
TI - Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 3
SP - 455
EP - 471
AB - The rotary inverted pendulum (RIP) system is one of the fundamental, nonlinear, unstable and interesting benchmark systems in the field of control theory. In this paper, two nonlinear control strategies, namely hierarchical sliding mode control (HSMC) and decoupled sliding mode control (DSMC), are discussed to address the stabilization problem of the RIP system. We introduced HSMC with state-dependent switching gain for stabilization of the RIP system. Numerical simulations are performed to analyze the performance of the hierarchical sliding mode controllers with the decoupled sliding mode controller and the controller obtained from the pole placement technique. We proposed HSMC with state-dependent switching gain as it shows better performance as compared to HSMC with constant switching gain, DSMC, and the state feedback controller based on pole placement technique. The stability analysis of proposed HSMC is also discussed by using Lyapunov stability theory.
LA - eng
KW - rotary inverted pendulum; sliding mode control; dynamical systems
UR - http://eudml.org/doc/294702
ER -
References
top- Antonio-Toledo, M. E., Sanchez, E. N., Alanis, A. Y., Florez, J., Perez-Cisneros, M. A., 10.1016/j.ifacol.2018.07.337, IFAC-Papers Online 51 (2018), 549-554. DOI10.1016/j.ifacol.2018.07.337
- Butt, Y. A., 10.1016/j.aej.2017.05.017, Alexandria Engrg. J. 57 (2018), 1591-1596. DOI10.1016/j.aej.2017.05.017
- Baker, G. J., Blackburn, J. A., The Pendulum: A Case Study in Physics., Oxford University Press, New York 2002. MR2155144
- Chen, Y. F., Huang, A. C., 10.1007/s11071-013-1112-4, Nonlinear Dynamics 76 (2014), 95-102. MR3189156DOI10.1007/s11071-013-1112-4
- Choi, J. J., Kim, J. S., 10.1007/bf02982326, KSME Int. J. 17 (2003), 1466-1474. DOI10.1007/bf02982326
- Coban, R., Ata, B., 10.1109/aim.2017.8014148, In: IEEE International Conference on Advanced Intelligent Mechatronics, Germany 2017. DOI10.1109/aim.2017.8014148
- Furuta, K., Yamakita, M., Kobayashi, S., 10.1243/pime_proc_1992_206_341_02, J. Systems Control Engrg. 206 (1992), 263-269. DOI10.1243/pime_proc_1992_206_341_02
- Gao, W., Hung, J. C., 10.1109/41.184820, IEEE Trans. Industr. Electronics 40 (1993), 45-55. MR3860982DOI10.1109/41.184820
- Grasser, F., DArrigo, A., Colombi, S., Rufer, A. C., 10.1109/41.982254, IEEE Trans. Industr. Electron. 49 (2002), 107-114. DOI10.1109/41.982254
- Hassanzadeh, I., Mobayen, S., 10.1155/2011/572424, Math. Problems Engrg. 2011 (2011), 1-17. DOI10.1155/2011/572424
- Irfan, J., Rehan, J., Zhao, J., Rizwan, J., Abdus, S., Mathematical model analysis and control algorithms design based on state feedback method of rotary inverted pendulum., Int. J. Research Engrg. Technol. 1 (2013), 41-50.
- Jia, Z., Yu, J., Mei, Y., Chen, Y., Shen, Y., Ai, X., 10.1016/j.ast.2017.05.022, Aerospace Science Technol. 68 (2017), 299-307. DOI10.1016/j.ast.2017.05.022
- Jadlovska, S., Sarnovsky, J., 10.2478/jee-2013-0002, J. Electr. Engrg. 64 (2013), 12-19. DOI10.2478/jee-2013-0002
- Jose, A., Augustine, C., Malola, S. M., Chacko, K., 10.4236/wjet.2015.32008, World J. Engrg. Technol. 3 (2015), 76-81. DOI10.4236/wjet.2015.32008
- Kchaou, A., Naamane, A., Koubaa, Y., M'sirdi, N., 10.1016/j.solener.2017.07.007, Solar Energy 155 (2017), 758-769. DOI10.1016/j.solener.2017.07.007
- Kaynak, O., Erbatur, K., Ertugrul, M., 10.1109/41.904539, IEEE Trans. Industr. Electron. 48 (2001), 4-17. DOI10.1109/41.904539
- Kurode, S., Chalanga, A., Bandyopadhyay, B., 10.3182/20110828-6-it-1002.02933, In: Preprints of the 18th IFAC World Congress, Milano 2011. DOI10.3182/20110828-6-it-1002.02933
- Khanesar, M. A., Teshnehlab, M., Shoorehdeli, M. A., 10.1109/icccyb.2007.4402019, In: Proc. 5th IEEE International Conference on Computational Cybernetics, Tunisia 2007. DOI10.1109/icccyb.2007.4402019
- Khanesar, M. A., Teshnehlab, M., Shoorehdeli, M. A., 10.1109/med.2007.4433653, In: Proc. 15th Mediterannean Conference on Control and Automation, Greece 2007. DOI10.1109/med.2007.4433653
- Liu, X., Vargas, A. N., Yu, X., Xu, L., 10.1016/j.jfranklin.2017.07.015, J. Franklin Inst. 354 (2017), 5813-5824. MR3692085DOI10.1016/j.jfranklin.2017.07.015
- Lu, B., Fang, Y., Sun, N., 10.1016/j.mechatronics.2017.09.006, Mechatronics 47 (2017), 116-125. DOI10.1016/j.mechatronics.2017.09.006
- Lin, X., Nie, J., Jiao, Y., Liang, K., Li, H., 10.1016/j.apor.2018.01.015, Appl. Ocean Res. 74 (2018), 40-48. DOI10.1016/j.apor.2018.01.015
- Lo, J. C., Kuo, Y. H., 10.1109/91.705510, IEEE Trans. Fuzzy Systems 6 (1998), 426-435. DOI10.1109/91.705510
- Muskinja, N., Tovornik, B., 10.1109/tie.2006.870667, IEEE Trans. Industr. Electron. 53 (2006), 631-639. DOI10.1109/tie.2006.870667
- Mei, H., He, Z., 10.1109/mace.2010.5536653, In: Proc. International Conference on Mechanic Automation and Control Engineering, Wuhan 2010. DOI10.1109/mace.2010.5536653
- Mon, Y. J., Lin, C. M., 10.1109/fuzz.2002.1005070, In: Proc. IEEE International Conference on Fuzzy Systems, Greece 2002. DOI10.1109/fuzz.2002.1005070
- Ngo, Q. H., Nguyen, N. P., Nguyen, C. N., Tran, T. H., Ha, Q. P., 10.1016/j.oceaneng.2017.05.019, Ocean Engrg. 140 (2017), 125-134. DOI10.1016/j.oceaneng.2017.05.019
- Nagarale, R., Patre, B., 10.1109/fuzz-ieee.2013.6622321, In: IEEE International Conference on Fuzzy Systems, Hyderabad 2013. DOI10.1109/fuzz-ieee.2013.6622321
- Oltean, S. E., 10.1016/j.protcy.2013.12.456, Procedia Technol. 12 (2014), 57-64. DOI10.1016/j.protcy.2013.12.456
- Phuong, N., Loc, H., Tuan, T., Control of two wheeled inverted pendulum using sliding mode technique., Int. J. Engrg. Res. Appl. 3 (2013), 1276-1282.
- Perruquetti, W., Barbot, J. P., 10.1201/9780203910856, CRC Press, 2002. DOI10.1201/9780203910856
- Qian, D., Yi, J., 10.1007/978-3-662-48417-3, Springer-Verlag, Berlin 2015. MR3408614DOI10.1007/978-3-662-48417-3
- Qureshi, M. S., Swarnkar, P., Gupta, S., 10.1016/j.robot.2018.08.008, Robotics Autonom. Systems 109 (2018), 68-85. DOI10.1016/j.robot.2018.08.008
- Qian, D., Yi, J., Zhao, D., Hierarchical sliding mode control for a class of simo under-actuated systems., Control Cybernet. 37 (2008), 159-175. MR2440728
- Qian, D., Yi, J., Zhao, D., Hao, Y., 10.1109/iros.2006.282521, In: Proc. International Conference on Intelligent Robots and Systems, Beijing 2006. DOI10.1109/iros.2006.282521
- Song, Z., Sun, K., Ling, S., 10.1016/j.isatra.2017.02.013, ISA Trans. 68 (2017), 353-366. DOI10.1016/j.isatra.2017.02.013
- Solanes, J. E., Gracia, L., Munoz-Benavent, P., Miro, J. V., Girbes, V., Tornero, J., 10.1016/j.isatra.2018.05.013, ISA Trans. 80 (2018), 528-541. DOI10.1016/j.isatra.2018.05.013
- Slotine, J. J. E., 10.1080/00207178408933284, Int. J. Control 40 (1984), 421-434. DOI10.1080/00207178408933284
- Sirisha, V., Junghare, A. S., 10.5121/ijccms.2014.3201, Int. J. Chaos, Control, Modell. Simul. 3 (2014), 1-13. DOI10.5121/ijccms.2014.3201
- Slotine, J. J. E., Li, W., Applied Nonlinear Control., Prentice Hall International Inc., 1991. Zbl0753.93036
- Tapia, A., Bernal, M., Fridman, L., 10.1016/j.sysconle.2017.03.011, Systems Control Lett. 104 (2017), 38-44. MR3652391DOI10.1016/j.sysconle.2017.03.011
- Tuan, L. A., Lee, S. G., Nho, L. C., Cuong, H. M., 10.1177/0959651815573903, Proc. Inst. Mechan. Engineers, Part I: J. Systems Control Engrg. 229 (2015), 662-674. DOI10.1177/0959651815573903
- Tuan, L. A., Cuong, H. M., Lee, S. G., Nho, L. C., Moon, K., 10.1177/1077546314558499, J. Vibration Control 22 (2016), 3067-3078. MR3527669DOI10.1177/1077546314558499
- Utkin, V. I., Korovin, S. K., Application of sliding mode to static optimization., Automatic Remote Control 4 (1972), 570-579. MR0738683
- Utkin, V. I., Yagn, K. D., Methods for construction of discontinuity planes in multidimensional variable structure systems., Automat. Remote Control 39 (1978), 72-77. MR0533368
- Utkin, V. I., Yagn, K. D., 10.1109/tac.1977.1101446, IEEE Trans. Automat. Control 22 (1997), 212-222. MR0484664DOI10.1109/tac.1977.1101446
- Utkin, V. I., Guldner, J., Shi, J., 10.1201/9781420065619, CRC Press, 2009. MR2455618DOI10.1201/9781420065619
- Wu, Y. J., Li, G. F., 10.1016/j.ymssp.2017.05.007, Mechan. Systems Signal Process. 98 (2018), 402-414. DOI10.1016/j.ymssp.2017.05.007
- Wu, A., Zhang, X., Zhang, Z., A control system based on the Lagrange modeling method for a single link rotary inverted pendulum., Engrg. Sci. 7 (2005), 11-15.
- Wen, J., Shi, Y., Lu, X., 10.1155/2017/4091302, J. Control Science Engrg. 2017 (2017), 1-11. MR3622180DOI10.1155/2017/4091302
- Yigit, I., 10.1177/1077546315598031, J. Vibration Control 23 (2017), 1645-1662. MR3659607DOI10.1177/1077546315598031
- Yue, M., An, C., Du, Y., Sun, J., 10.1016/j.fss.2015.08.013, Fuzzy Sets Systems 290 (2016), 158-177. MR3460256DOI10.1016/j.fss.2015.08.013
- Zhang, J., Zhang, Q., Wang, Y., 10.1016/j.ins.2017.02.005, Inform. Sci. 391 (2017), 9-27. DOI10.1016/j.ins.2017.02.005
- Zhao, Y., Huang, P., Zhang, F., 10.1016/j.actaastro.2017.11.025, Acta Astronautica 143 (2018), 310-321. DOI10.1016/j.actaastro.2017.11.025
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.