Invariant symbolic calculus for semidirect products
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 2, page 253-269
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCahen, Benjamin. "Invariant symbolic calculus for semidirect products." Commentationes Mathematicae Universitatis Carolinae 59.2 (2018): 253-269. <http://eudml.org/doc/294744>.
@article{Cahen2018,
abstract = {Let $G$ be the semidirect product $V\rtimes \,K$ where $K$ is a connected semisimple non-compact Lie group acting linearly on a finite-dimensional real vector space $V$. Let $\pi $ be a unitary irreducible representation of $G$ which is associated by the Kirillov-Kostant method of orbits with a coadjoint orbit of $G$ whose little group is a maximal compact subgroup of $K$. We construct an invariant symbolic calculus for $\pi $, under some technical hypothesis. We give some examples including the Poincaré group.},
author = {Cahen, Benjamin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semidirect products; invariant symbolic calculus; coadjoint orbit; unitary representation; Berezin quantization; Weyl quantization; Poincaré group},
language = {eng},
number = {2},
pages = {253-269},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Invariant symbolic calculus for semidirect products},
url = {http://eudml.org/doc/294744},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Cahen, Benjamin
TI - Invariant symbolic calculus for semidirect products
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 2
SP - 253
EP - 269
AB - Let $G$ be the semidirect product $V\rtimes \,K$ where $K$ is a connected semisimple non-compact Lie group acting linearly on a finite-dimensional real vector space $V$. Let $\pi $ be a unitary irreducible representation of $G$ which is associated by the Kirillov-Kostant method of orbits with a coadjoint orbit of $G$ whose little group is a maximal compact subgroup of $K$. We construct an invariant symbolic calculus for $\pi $, under some technical hypothesis. We give some examples including the Poincaré group.
LA - eng
KW - semidirect products; invariant symbolic calculus; coadjoint orbit; unitary representation; Berezin quantization; Weyl quantization; Poincaré group
UR - http://eudml.org/doc/294744
ER -
References
top- Ali S. T., Engliš M., 10.1142/S0129055X05002376, Rev. Math. Phys. 17 (2005), no. 4, 391–490. MR2151954DOI10.1142/S0129055X05002376
- Arazy J., Upmeier H., Weyl calculus for complex and real symmetric domains, Harmonic Analysis on Complex Homogeneous Domains and Lie Groups (Rome, 2001). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), no. 3–4, 165–181. Zbl1150.43302MR1984098
- Arazy J., Upmeier H., Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains, Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), De Gruyter, Berlin, 2002, pp. 151–211. MR1943284
- Arnal D., Cahen M., Gutt S., Representation of compact Lie groups and quantization by deformation, Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 4–5, 123–141. MR1027456
- Arratia O., Martín M. A., del Olmo M. A., Deformation on phase space, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 96 (2002), no. 1, 63–81. MR1915672
- Berezin F. A., Quantization, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116–1175 (Russian). Zbl0976.83531MR0395610
- Berezin F. A., Quantization in complex symmetric spaces, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 363–402, 472 (Russian). MR0508179
- Brif C., Mann A., 10.1103/PhysRevA.59.971, Phys. Rev. A (3) 59 (1999), no. 2, 971–987. MR1679730DOI10.1103/PhysRevA.59.971
- Cahen B., Quantification d'une orbite massive d'un groupe de Poincaré généralisé, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 7, 803–806 (French. English. French summary). Zbl0883.22016MR1483721
- Cahen B., 10.1016/j.difgeo.2006.08.005, Differential Geom. Appl. 25 (2007), no. 2, 177–190. Zbl1117.81087MR2311733DOI10.1016/j.difgeo.2006.08.005
- Cahen B., 10.7146/math.scand.a-15106, Math. Scand. 105 (2009), no. 1, 66–84. MR2549798DOI10.7146/math.scand.a-15106
- Cahen B., 10.4171/RSMUP/129-16, Rend. Semin. Mat. Univ. Padova 129 (2013), 277–297. MR3090642DOI10.4171/RSMUP/129-16
- Cahen B., Global parametrization of scalar holomorphic coadjoint orbits of a quasi-Hermitian Lie group, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 52 (2013), 35–48. MR3202747
- Cahen B., Stratonovich-Weyl correspondence for the real diamond group, Riv. Mat. Univ. Parma (N.S.) 4 (2013), no. 1, 197–213. MR3137538
- Cahen B., 10.4171/RSMUP/136-7, Rend. Semin. Mat. Univ. Padova 136 (2016), 69–93. MR3593544DOI10.4171/RSMUP/136-7
- Cariñena J. F., Gracia-Bondía J. M., Várilly J. C., 10.1088/0305-4470/23/6/015, J. Phys. A 23 (1990), no. 6, 901–933. MR1048769DOI10.1088/0305-4470/23/6/015
- Folland B., Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton University Press, Princeton, 1989. Zbl0682.43001MR0983366
- Gracia-Bondía J. M., Generalized Moyal quantization on homogeneous symplectic spaces, Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990), Contemp. Math., 134, Amer. Math. Soc., Providence, 1992, pp. 93–114. MR1187280
- Helgason S., 10.1090/gsm/034, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, 2001. Zbl0993.53002MR1834454DOI10.1090/gsm/034
- Hörmander L., The Analysis of Linear Partial Differential Operators. III. Pseudodifferential Operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, Berlin, 1985. MR0781536
- Kirillov A. A., 10.1090/gsm/064, Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, 2004. MR2069175DOI10.1090/gsm/064
- Kostant B., Quantization and unitary representations. I. Prequantization, Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., 170, Springer, Berlin, 1970, pp. 87–208. MR0294568
- Landsman N. P., Mathematical Topics Between Classical and Quantum Mechanics, Springer Monographs in Mathematics, Springer, New York, 1998. MR1662141
- Rawnsley J. H., 10.1017/S0305004100051793, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 2, 345–350. MR0387499DOI10.1017/S0305004100051793
- Rawnsley J., Cahen M., Gutt S., 10.1016/0393-0440(90)90019-Y, J. Geom. Phys. 7 (1990), 45–62. MR1094730DOI10.1016/0393-0440(90)90019-Y
- Simms D. J., 10.1007/BFb0069914, Lecture Notes in Mathematics, 52, Springer, Berlin, 1968. Zbl0161.24002MR0232579DOI10.1007/BFb0069914
- Stratonovich R. L., On distributions in representation space, Soviet Physics. JETP 4 (1957), 891–898. Zbl0082.19302MR0088173
- Taylor M. E., Noncommutative Harmonic Analysis, Mathematical Surveys and Monographs, 22, American Mathematical Society, Providence, 1986. MR0852988
- Unterberger A., Unterberger J., 10.24033/asens.1467, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 1, 83–116 (French). MR0744069DOI10.24033/asens.1467
- Várilly J. C., Gracia-Bondía J. M., 10.1016/0003-4916(89)90262-5, Ann. Physics 190 (1989), no. 1, 107–148. MR0994048DOI10.1016/0003-4916(89)90262-5
- Voros A., 10.1016/0022-1236(78)90049-6, J. Funct. Anal. 29 (1978), no. 1, 104–132. MR0496088DOI10.1016/0022-1236(78)90049-6
- Wallach N. R., Harmonic Analysis on Homogeneous Spaces, Pure and Applied Mathematics, 19, Marcel Dekker, New York, 1973. Zbl0265.22022MR0498996
- Wildberger N. J., 10.1017/S1446788700034741, J. Austral. Math. Soc. Ser. A 56 (1994), no. 1, 64–116. MR1250994DOI10.1017/S1446788700034741
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.