Invariant symbolic calculus for semidirect products

Benjamin Cahen

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 2, page 253-269
  • ISSN: 0010-2628

Abstract

top
Let G be the semidirect product V K where K is a connected semisimple non-compact Lie group acting linearly on a finite-dimensional real vector space V . Let π be a unitary irreducible representation of G which is associated by the Kirillov-Kostant method of orbits with a coadjoint orbit of G whose little group is a maximal compact subgroup of K . We construct an invariant symbolic calculus for π , under some technical hypothesis. We give some examples including the Poincaré group.

How to cite

top

Cahen, Benjamin. "Invariant symbolic calculus for semidirect products." Commentationes Mathematicae Universitatis Carolinae 59.2 (2018): 253-269. <http://eudml.org/doc/294744>.

@article{Cahen2018,
abstract = {Let $G$ be the semidirect product $V\rtimes \,K$ where $K$ is a connected semisimple non-compact Lie group acting linearly on a finite-dimensional real vector space $V$. Let $\pi $ be a unitary irreducible representation of $G$ which is associated by the Kirillov-Kostant method of orbits with a coadjoint orbit of $G$ whose little group is a maximal compact subgroup of $K$. We construct an invariant symbolic calculus for $\pi $, under some technical hypothesis. We give some examples including the Poincaré group.},
author = {Cahen, Benjamin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semidirect products; invariant symbolic calculus; coadjoint orbit; unitary representation; Berezin quantization; Weyl quantization; Poincaré group},
language = {eng},
number = {2},
pages = {253-269},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Invariant symbolic calculus for semidirect products},
url = {http://eudml.org/doc/294744},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Cahen, Benjamin
TI - Invariant symbolic calculus for semidirect products
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 2
SP - 253
EP - 269
AB - Let $G$ be the semidirect product $V\rtimes \,K$ where $K$ is a connected semisimple non-compact Lie group acting linearly on a finite-dimensional real vector space $V$. Let $\pi $ be a unitary irreducible representation of $G$ which is associated by the Kirillov-Kostant method of orbits with a coadjoint orbit of $G$ whose little group is a maximal compact subgroup of $K$. We construct an invariant symbolic calculus for $\pi $, under some technical hypothesis. We give some examples including the Poincaré group.
LA - eng
KW - semidirect products; invariant symbolic calculus; coadjoint orbit; unitary representation; Berezin quantization; Weyl quantization; Poincaré group
UR - http://eudml.org/doc/294744
ER -

References

top
  1. Ali S. T., Engliš M., 10.1142/S0129055X05002376, Rev. Math. Phys. 17 (2005), no. 4, 391–490. MR2151954DOI10.1142/S0129055X05002376
  2. Arazy J., Upmeier H., Weyl calculus for complex and real symmetric domains, Harmonic Analysis on Complex Homogeneous Domains and Lie Groups (Rome, 2001). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), no. 3–4, 165–181. Zbl1150.43302MR1984098
  3. Arazy J., Upmeier H., Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains, Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), De Gruyter, Berlin, 2002, pp. 151–211. MR1943284
  4. Arnal D., Cahen M., Gutt S., Representation of compact Lie groups and quantization by deformation, Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 4–5, 123–141. MR1027456
  5. Arratia O., Martín M. A., del Olmo M. A., Deformation on phase space, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 96 (2002), no. 1, 63–81. MR1915672
  6. Berezin F. A., Quantization, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116–1175 (Russian). Zbl0976.83531MR0395610
  7. Berezin F. A., Quantization in complex symmetric spaces, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 363–402, 472 (Russian). MR0508179
  8. Brif C., Mann A., 10.1103/PhysRevA.59.971, Phys. Rev. A (3) 59 (1999), no. 2, 971–987. MR1679730DOI10.1103/PhysRevA.59.971
  9. Cahen B., Quantification d'une orbite massive d'un groupe de Poincaré généralisé, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 7, 803–806 (French. English. French summary). Zbl0883.22016MR1483721
  10. Cahen B., 10.1016/j.difgeo.2006.08.005, Differential Geom. Appl. 25 (2007), no. 2, 177–190. Zbl1117.81087MR2311733DOI10.1016/j.difgeo.2006.08.005
  11. Cahen B., 10.7146/math.scand.a-15106, Math. Scand. 105 (2009), no. 1, 66–84. MR2549798DOI10.7146/math.scand.a-15106
  12. Cahen B., 10.4171/RSMUP/129-16, Rend. Semin. Mat. Univ. Padova 129 (2013), 277–297. MR3090642DOI10.4171/RSMUP/129-16
  13. Cahen B., Global parametrization of scalar holomorphic coadjoint orbits of a quasi-Hermitian Lie group, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 52 (2013), 35–48. MR3202747
  14. Cahen B., Stratonovich-Weyl correspondence for the real diamond group, Riv. Mat. Univ. Parma (N.S.) 4 (2013), no. 1, 197–213. MR3137538
  15. Cahen B., 10.4171/RSMUP/136-7, Rend. Semin. Mat. Univ. Padova 136 (2016), 69–93. MR3593544DOI10.4171/RSMUP/136-7
  16. Cariñena J. F., Gracia-Bondía J. M., Várilly J. C., 10.1088/0305-4470/23/6/015, J. Phys. A 23 (1990), no. 6, 901–933. MR1048769DOI10.1088/0305-4470/23/6/015
  17. Folland B., Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton University Press, Princeton, 1989. Zbl0682.43001MR0983366
  18. Gracia-Bondía J. M., Generalized Moyal quantization on homogeneous symplectic spaces, Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990), Contemp. Math., 134, Amer. Math. Soc., Providence, 1992, pp. 93–114. MR1187280
  19. Helgason S., 10.1090/gsm/034, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, 2001. Zbl0993.53002MR1834454DOI10.1090/gsm/034
  20. Hörmander L., The Analysis of Linear Partial Differential Operators. III. Pseudodifferential Operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, Berlin, 1985. MR0781536
  21. Kirillov A. A., 10.1090/gsm/064, Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, 2004. MR2069175DOI10.1090/gsm/064
  22. Kostant B., Quantization and unitary representations. I. Prequantization, Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., 170, Springer, Berlin, 1970, pp. 87–208. MR0294568
  23. Landsman N. P., Mathematical Topics Between Classical and Quantum Mechanics, Springer Monographs in Mathematics, Springer, New York, 1998. MR1662141
  24. Rawnsley J. H., 10.1017/S0305004100051793, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 2, 345–350. MR0387499DOI10.1017/S0305004100051793
  25. Rawnsley J., Cahen M., Gutt S., 10.1016/0393-0440(90)90019-Y, J. Geom. Phys. 7 (1990), 45–62. MR1094730DOI10.1016/0393-0440(90)90019-Y
  26. Simms D. J., 10.1007/BFb0069914, Lecture Notes in Mathematics, 52, Springer, Berlin, 1968. Zbl0161.24002MR0232579DOI10.1007/BFb0069914
  27. Stratonovich R. L., On distributions in representation space, Soviet Physics. JETP 4 (1957), 891–898. Zbl0082.19302MR0088173
  28. Taylor M. E., Noncommutative Harmonic Analysis, Mathematical Surveys and Monographs, 22, American Mathematical Society, Providence, 1986. MR0852988
  29. Unterberger A., Unterberger J., 10.24033/asens.1467, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 1, 83–116 (French). MR0744069DOI10.24033/asens.1467
  30. Várilly J. C., Gracia-Bondía J. M., 10.1016/0003-4916(89)90262-5, Ann. Physics 190 (1989), no. 1, 107–148. MR0994048DOI10.1016/0003-4916(89)90262-5
  31. Voros A., 10.1016/0022-1236(78)90049-6, J. Funct. Anal. 29 (1978), no. 1, 104–132. MR0496088DOI10.1016/0022-1236(78)90049-6
  32. Wallach N. R., Harmonic Analysis on Homogeneous Spaces, Pure and Applied Mathematics, 19, Marcel Dekker, New York, 1973. Zbl0265.22022MR0498996
  33. Wildberger N. J., 10.1017/S1446788700034741, J. Austral. Math. Soc. Ser. A 56 (1994), no. 1, 64–116. MR1250994DOI10.1017/S1446788700034741

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.