Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2013)
- Volume: 52, Issue: 1, page 35-48
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topCahen, Benjamin. "Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 52.1 (2013): 35-48. <http://eudml.org/doc/260687>.
@article{Cahen2013,
abstract = {Let $G$ be a quasi-Hermitian Lie group with Lie algebra $\mathfrak \{g\}$ and $K$ be a compactly embedded subgroup of $G$. Let $\xi _0$ be a regular element of $\{\mathfrak \{g\}\}^\{\ast \}$ which is fixed by $K$. We give an explicit $G$-equivariant diffeomorphism from a complex domain onto the coadjoint orbit $\mathcal \{O\}(\{\xi _0\})$ of $\xi _0$. This generalizes a result of [B. Cahen, Berezin quantization and holomorphic representations, Rend. Sem. Mat. Univ. Padova, to appear] concerning the case where $\{\mathcal \{O\}\}(\{\xi _0\})$ is associated with a unitary irreducible representation of $G$ which is holomorphically induced from a unitary character of $K$. In particular, we consider the case $G=SU(p,q)$ and the case where $G$ is the Jacobi group.},
author = {Cahen, Benjamin},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {quasi-Hermitian Lie group; coadjoint orbit; stereographic projection; Berezin quantization; unitary holomorphic representation; unitary group; Jacobi group; quasi-Hermitian Lie group; coadjoint orbit; stereographic projection; Berezin quantization; unitary holomorphic representation; unitary group; Jacobi group},
language = {eng},
number = {1},
pages = {35-48},
publisher = {Palacký University Olomouc},
title = {Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group},
url = {http://eudml.org/doc/260687},
volume = {52},
year = {2013},
}
TY - JOUR
AU - Cahen, Benjamin
TI - Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2013
PB - Palacký University Olomouc
VL - 52
IS - 1
SP - 35
EP - 48
AB - Let $G$ be a quasi-Hermitian Lie group with Lie algebra $\mathfrak {g}$ and $K$ be a compactly embedded subgroup of $G$. Let $\xi _0$ be a regular element of ${\mathfrak {g}}^{\ast }$ which is fixed by $K$. We give an explicit $G$-equivariant diffeomorphism from a complex domain onto the coadjoint orbit $\mathcal {O}({\xi _0})$ of $\xi _0$. This generalizes a result of [B. Cahen, Berezin quantization and holomorphic representations, Rend. Sem. Mat. Univ. Padova, to appear] concerning the case where ${\mathcal {O}}({\xi _0})$ is associated with a unitary irreducible representation of $G$ which is holomorphically induced from a unitary character of $K$. In particular, we consider the case $G=SU(p,q)$ and the case where $G$ is the Jacobi group.
LA - eng
KW - quasi-Hermitian Lie group; coadjoint orbit; stereographic projection; Berezin quantization; unitary holomorphic representation; unitary group; Jacobi group; quasi-Hermitian Lie group; coadjoint orbit; stereographic projection; Berezin quantization; unitary holomorphic representation; unitary group; Jacobi group
UR - http://eudml.org/doc/260687
ER -
References
top- Arnal, D., Cortet, J.-C., 10.1007/BF00398548, Lett. Math. Phys. 9 (1985), 25–34. (1985) Zbl0616.46041MR0774736DOI10.1007/BF00398548
- Bar-Moshe, D., A method for weight multiplicity computation based on Berezin quantization, SIGMA 5 (2009), 091, 1–12. (2009) Zbl1188.22009MR2559670
- Bar-Moshe, D., Marinov, M. S., 10.1088/0305-4470/27/18/035, J. Phys. A: Math. Gen. 27 (1994), 6287–6298. (1994) Zbl0843.58056MR1306179DOI10.1088/0305-4470/27/18/035
- Berezin, F. A., 10.1070/IM1974v008n05ABEH002140, Math. USSR Izv. 8, 5 (1974), 1109–1165. (1974) Zbl0312.53049DOI10.1070/IM1974v008n05ABEH002140
- Berezin, F. A., 10.1070/IM1975v009n02ABEH001480, Math. USSR Izv. 9, 2 (1975), 341–379. (1975) DOI10.1070/IM1975v009n02ABEH001480
- Berceanu, S., 10.1142/S0129055X06002619, Rev. Math. Phys. 18 (2006), 163–199. (2006) Zbl1099.81036MR2228923DOI10.1142/S0129055X06002619
- Berceanu, S., Gheorghe, A., 10.1142/S0219887811005920, Int. J. Geom. Methods Mod. Phys. 8 (2011), 1783–1798. (2011) Zbl1250.22010MR2876095DOI10.1142/S0219887811005920
- Bernatska, J., Holod, P., Geometry and topology of coadjoint orbits of semisimple Lie groups, Mladenov, I. M., de León, M. (eds) Proceedings of the 9th international conference on ’Geometry, Integrability and Quantization’, June 8–13, 2007, Varna, Bulgarian Academy of Sciences, Sofia, 2008, 146–166. (2008) Zbl1208.22009MR2436268
- Berndt, R., Böcherer, S., 10.1007/BF02570858, Math. Z. 204 (1990), 13–44. (1990) Zbl0695.10024MR1048065DOI10.1007/BF02570858
- Berndt, R., Schmidt, R., Elements of the Representation Theory of the Jacobi Group, Progress in Mathematics 163, Birkhäuser Verlag, Basel, 1988. (1988) MR1634977
- Cahen, B., 10.1007/BF00403252, Lett. Math. Phys. 36 (1996), 65–75. (1996) Zbl0843.22020MR1371298DOI10.1007/BF00403252
- Cahen, B., Contraction de vers le groupe de Heisenberg, In: Mathematical works, Part XV, Séminaire de Mathématique Université du Luxembourg, Luxembourg, (2004), 19–43. (2004) Zbl1074.22005MR2143420
- Cahen, B., 10.1016/j.difgeo.2006.08.005, Diff. Geom. Appl. 25 (2007), 177–190. (2007) Zbl1117.81087MR2311733DOI10.1016/j.difgeo.2006.08.005
- Cahen, B., Multiplicities of compact Lie group representations via Berezin quantization, Mat. Vesnik 60 (2008), 295–309. (2008) Zbl1199.22016MR2465811
- Cahen, B., Contraction of compact semisimple Lie groups via Berezin quantization, Illinois J. Math. 53, 1 (2009), 265–288. (2009) Zbl1185.22008MR2584946
- Cahen, B., Berezin quantization on generalized flag manifolds, Math. Scand. 105 (2009), 66–84. (2009) Zbl1183.22006MR2549798
- Cahen, B., Contraction of discrete series via Berezin quantization, J. Lie Theory 19 (2009), 291–310. (2009) Zbl1185.22007MR2572131
- Cahen, B., Berezin quantization for discrete series, Beiträge Algebra Geom. 51 (2010), 301–311. (2010) MR2682458
- Cahen, B., Stratonovich-Weyl correspondence for discrete series representations, Arch. Math. (Brno) 47 (2011), 41–58. (2011) Zbl1240.22011MR2813546
- Cahen, B., Berezin quantization and holomorphic representations, Rend. Sem. Mat. Univ. Padova, to appear.
- Cahen, M., Gutt, S., Rawnsley, J., 10.1016/0393-0440(90)90019-Y, J. Geom. Phys. 7 (1990), 45–62. (1990) MR1094730DOI10.1016/0393-0440(90)90019-Y
- Cahen, M., Gutt, S., Rawnsley, J., 10.1007/BF00751065, Lett. Math. Phys. 30 (1994), 291–305. (1994) MR1271090DOI10.1007/BF00751065
- Cotton, P., Dooley, A. H., Contraction of an adapted functional calculus, J. Lie Theory 7 (1997), 147–164. (1997) Zbl0882.22015MR1473162
- Folland, B., Harmonic Analysis in Phase Space, , Princeton Univ. Press, Princeton, 1989. (1989) Zbl0682.43001MR0983366
- Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics 34, American Mathematical Society, Providence, Rhode Island, 2001. (2001) Zbl0993.53002MR1834454
- Kirillov, A. A., Lectures on the Orbit Method, Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, Rhode Island, 2004. (2004) MR2069175
- Kostant, B., Quantization and unitary representations, In: Modern Analysis and Applications, Lecture Notes in Mathematics 170, Springer-Verlag, Berlin, Heidelberg, New York, (1970), 87–207. (1970) Zbl0223.53028MR0294568
- Neeb, K-H., Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics 28, Walter de Gruyter, Berlin, New York, 2000. (2000) MR1740617
- Satake, I, Algebraic Structures of Symmetric Domains, Iwanami Sho-ten, Tokyo and Princeton Univ. Press, Princeton, NJ, 1971. (1971) MR0591460
- Skrypnik, T. V., 10.1007/BF02525136, Ukr. Math. J. 51 (1999), 1939–1944. (1999) MR1752044DOI10.1007/BF02525136
- Varadarajan, V. S., Lie groups, Lie Algebras and Their Representations, Graduate Texts in Mathematics 102, Springer-Verlag, Berlin, 1984. (1984) Zbl0955.22500MR0746308
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.