Boundedness of generalized fractional integral operators on Orlicz spaces near L 1 over metric measure spaces

Daiki Hashimoto; Takao Ohno; Tetsu Shimomura

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 1, page 207-223
  • ISSN: 0011-4642

Abstract

top
We are concerned with the boundedness of generalized fractional integral operators I ρ , τ from Orlicz spaces L Φ ( X ) near L 1 ( X ) to Orlicz spaces L Ψ ( X ) over metric measure spaces equipped with lower Ahlfors Q -regular measures, where Φ is a function of the form Φ ( r ) = r ( r ) and is of log-type. We give a generalization of paper by Mizuta et al. (2010), in the Euclidean setting. We deal with both generalized Riesz potentials and generalized logarithmic potentials.

How to cite

top

Hashimoto, Daiki, Ohno, Takao, and Shimomura, Tetsu. "Boundedness of generalized fractional integral operators on Orlicz spaces near $L^1$ over metric measure spaces." Czechoslovak Mathematical Journal 69.1 (2019): 207-223. <http://eudml.org/doc/294775>.

@article{Hashimoto2019,
abstract = {We are concerned with the boundedness of generalized fractional integral operators $I_\{\rho ,\tau \}$ from Orlicz spaces $L^\{\Phi \}(X)$ near $L^1(X)$ to Orlicz spaces $L^\{\Psi \}(X)$ over metric measure spaces equipped with lower Ahlfors $Q$-regular measures, where $\Phi $ is a function of the form $\Phi (r)=r\ell (r)$ and $\ell $ is of log-type. We give a generalization of paper by Mizuta et al. (2010), in the Euclidean setting. We deal with both generalized Riesz potentials and generalized logarithmic potentials.},
author = {Hashimoto, Daiki, Ohno, Takao, Shimomura, Tetsu},
journal = {Czechoslovak Mathematical Journal},
keywords = {Orlicz space; Riesz potential; fractional integral; metric measure space; lower Ahlfors regular},
language = {eng},
number = {1},
pages = {207-223},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness of generalized fractional integral operators on Orlicz spaces near $L^1$ over metric measure spaces},
url = {http://eudml.org/doc/294775},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Hashimoto, Daiki
AU - Ohno, Takao
AU - Shimomura, Tetsu
TI - Boundedness of generalized fractional integral operators on Orlicz spaces near $L^1$ over metric measure spaces
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 207
EP - 223
AB - We are concerned with the boundedness of generalized fractional integral operators $I_{\rho ,\tau }$ from Orlicz spaces $L^{\Phi }(X)$ near $L^1(X)$ to Orlicz spaces $L^{\Psi }(X)$ over metric measure spaces equipped with lower Ahlfors $Q$-regular measures, where $\Phi $ is a function of the form $\Phi (r)=r\ell (r)$ and $\ell $ is of log-type. We give a generalization of paper by Mizuta et al. (2010), in the Euclidean setting. We deal with both generalized Riesz potentials and generalized logarithmic potentials.
LA - eng
KW - Orlicz space; Riesz potential; fractional integral; metric measure space; lower Ahlfors regular
UR - http://eudml.org/doc/294775
ER -

References

top
  1. Björn, A., Björn, J., 10.4171/099, EMS Tracts in Mathematics 17, European Mathematical Society, Zürich (2011). (2011) Zbl1231.31001MR2867756DOI10.4171/099
  2. Cianchi, A., 10.1112/S0024610799007711, J. Lond. Math. Soc., II. Ser. 60 (1999), 187-202. (1999) Zbl0940.46015MR1721824DOI10.1112/S0024610799007711
  3. DeJarnette, N., 10.1016/j.jmaa.2014.09.064, J. Math. Anal. Appl. 423 (2015), 358-376. (2015) Zbl1333.46034MR3273185DOI10.1016/j.jmaa.2014.09.064
  4. Dyda, B., 10.4064/sm197-3-3, Stud. Math. 197 (2010), 247-256. (2010) Zbl1202.46037MR2607491DOI10.4064/sm197-3-3
  5. Eridani, Gunawan, H., Nakai, E., On generalized fractional integral operators, Sci. Math. Jpn. 60 (2004), 539-550. (2004) Zbl1058.42007MR2099586
  6. Futamura, T., Shimomura, T., 10.1007/s12220-017-9860-x, J. Geom. Anal. 28 (2018), 1233-1244. (2018) Zbl06902266MR3790498DOI10.1007/s12220-017-9860-x
  7. García-Cuerva, J., Gatto, A. E., 10.4064/sm162-3-5, Stud. Math. 162 (2004), 245-261. (2004) Zbl1045.42006MR2047654DOI10.4064/sm162-3-5
  8. Gunawan, H., A note on the generalized fractional integral operators, J. Indones. Math. Soc. 9 (2003), 39-43. (2003) Zbl1129.42380MR2013135
  9. Haj{ł}asz, P., Koskela, P., 10.1090/memo/0688, Mem. Am. Math. Soc. 145 (2000), No. 688, 101 pages. (2000) Zbl0954.46022MR1683160DOI10.1090/memo/0688
  10. Hedberg, L. I., 10.2307/2039187, Proc. Am. Math. Soc. 36 (1972), 505-510. (1972) Zbl0283.26003MR0312232DOI10.2307/2039187
  11. Heinonen, J., 10.1007/978-1-4613-0131-8, Universitext, Springer, New York (2001). (2001) Zbl0985.46008MR1800917DOI10.1007/978-1-4613-0131-8
  12. Hyt{ö}nen, T., 10.5565/PUBLMAT_54210_10, Publ. Mat., Barc. 54 (2010), 485-504. (2010) Zbl1246.30087MR2675934DOI10.5565/PUBLMAT_54210_10
  13. Lisini, S., 10.1051/cocv/2015020, ESAIM, Control Optim. Calc. Var. 22 (2016), 670-687. (2016) Zbl1348.49048MR3527938DOI10.1051/cocv/2015020
  14. Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T., 10.2969/jmsj/06230707, J. Math. Soc. Japan 62 (2010), 707-744. (2010) Zbl1200.26007MR2648060DOI10.2969/jmsj/06230707
  15. Mizuta, Y., Shimomura, T., 10.1524/anly.2000.20.3.201, Analysis, München 20 (2000), 201-223. (2000) Zbl0955.31002MR1778254DOI10.1524/anly.2000.20.3.201
  16. Mizuta, Y., Shimomura, T., Sobukawa, T., Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces, Osaka J. Math. 46 (2009), 255-271. (2009) Zbl1186.31003MR2531149
  17. Nakai, E., 10.11650/twjm/1500574952, Taiwanese J. Math. 5 (2001), 587-602. (2001) Zbl0990.26007MR1849780DOI10.11650/twjm/1500574952
  18. Nakai, E., On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type, Sci. Math. Jpn. 54 (2001), 473-487. (2001) Zbl1007.42013MR1874169
  19. Nazarov, F., Treil, S., Volberg, A., 10.1155/S1073792897000469, Int. Math. Res. Not. No. 15 (1997), 703-726. (1997) Zbl0889.42013MR1470373DOI10.1155/S1073792897000469
  20. Nazarov, F., Treil, S., Volberg, A., 10.1155/S1073792898000312, Int. Math. Res. Not. No. 9 (1998), 463-487. (1998) Zbl0918.42009MR1626935DOI10.1155/S1073792898000312
  21. Ohno, T., Shimomura, T., 10.1007/s10587-014-0095-8, Czech. Math. J. 64 (2014), 209-228. (2014) Zbl1340.31009MR3247456DOI10.1007/s10587-014-0095-8
  22. Ohno, T., Shimomura, T., 10.1016/j.na.2014.04.008, Nonlinear Anal., Theory Methods Appl., Ser. A 106 (2014), 1-17. (2014) Zbl1306.46039MR3209682DOI10.1016/j.na.2014.04.008
  23. Ohno, T., Shimomura, T., 10.1007/s10587-015-0187-0, Czech. Math. J. 65 (2015), 435-474. (2015) Zbl1363.46027MR3360438DOI10.1007/s10587-015-0187-0
  24. O'Neil, R., 10.2307/1994271, Trans. Am. Math. Soc. 115 (1965), 300-328. (1965) Zbl0132.09201MR0194881DOI10.2307/1994271
  25. Sawano, Y., Shimomura, T., 10.1155/2013/984259, J. Funct. Spaces Appl. 2013 (2013), Article ID 984259, 12 pages. (2013) Zbl1275.46017MR3040574DOI10.1155/2013/984259
  26. Sawano, Y., Shimomura, T., 10.1007/s13348-013-0082-7, Collect. Math. 64 (2013), 313-350. (2013) Zbl1280.31001MR3084400DOI10.1007/s13348-013-0082-7
  27. Sawano, Y., Shimomura, T., 10.4171/ZAA/1584, Z. Anal. Anwend. 36 (2017), 159-190. (2017) Zbl1364.26012MR3632252DOI10.4171/ZAA/1584
  28. Sawano, Y., Shimomura, T., 10.1080/10652469.2017.1318281, Integral Transforms Spec. Funct. 28 (2017), 534-546. (2017) Zbl1372.42011MR3645968DOI10.1080/10652469.2017.1318281
  29. Tolsa, X., 10.1007/s002080000144, Math. Ann. 319 (2001), 89-149. (2001) Zbl0974.42014MR1812821DOI10.1007/s002080000144

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.