Boundedness of generalized fractional integral operators on Orlicz spaces near over metric measure spaces
Daiki Hashimoto; Takao Ohno; Tetsu Shimomura
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 1, page 207-223
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHashimoto, Daiki, Ohno, Takao, and Shimomura, Tetsu. "Boundedness of generalized fractional integral operators on Orlicz spaces near $L^1$ over metric measure spaces." Czechoslovak Mathematical Journal 69.1 (2019): 207-223. <http://eudml.org/doc/294775>.
@article{Hashimoto2019,
abstract = {We are concerned with the boundedness of generalized fractional integral operators $I_\{\rho ,\tau \}$ from Orlicz spaces $L^\{\Phi \}(X)$ near $L^1(X)$ to Orlicz spaces $L^\{\Psi \}(X)$ over metric measure spaces equipped with lower Ahlfors $Q$-regular measures, where $\Phi $ is a function of the form $\Phi (r)=r\ell (r)$ and $\ell $ is of log-type. We give a generalization of paper by Mizuta et al. (2010), in the Euclidean setting. We deal with both generalized Riesz potentials and generalized logarithmic potentials.},
author = {Hashimoto, Daiki, Ohno, Takao, Shimomura, Tetsu},
journal = {Czechoslovak Mathematical Journal},
keywords = {Orlicz space; Riesz potential; fractional integral; metric measure space; lower Ahlfors regular},
language = {eng},
number = {1},
pages = {207-223},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness of generalized fractional integral operators on Orlicz spaces near $L^1$ over metric measure spaces},
url = {http://eudml.org/doc/294775},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Hashimoto, Daiki
AU - Ohno, Takao
AU - Shimomura, Tetsu
TI - Boundedness of generalized fractional integral operators on Orlicz spaces near $L^1$ over metric measure spaces
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 207
EP - 223
AB - We are concerned with the boundedness of generalized fractional integral operators $I_{\rho ,\tau }$ from Orlicz spaces $L^{\Phi }(X)$ near $L^1(X)$ to Orlicz spaces $L^{\Psi }(X)$ over metric measure spaces equipped with lower Ahlfors $Q$-regular measures, where $\Phi $ is a function of the form $\Phi (r)=r\ell (r)$ and $\ell $ is of log-type. We give a generalization of paper by Mizuta et al. (2010), in the Euclidean setting. We deal with both generalized Riesz potentials and generalized logarithmic potentials.
LA - eng
KW - Orlicz space; Riesz potential; fractional integral; metric measure space; lower Ahlfors regular
UR - http://eudml.org/doc/294775
ER -
References
top- Björn, A., Björn, J., 10.4171/099, EMS Tracts in Mathematics 17, European Mathematical Society, Zürich (2011). (2011) Zbl1231.31001MR2867756DOI10.4171/099
- Cianchi, A., 10.1112/S0024610799007711, J. Lond. Math. Soc., II. Ser. 60 (1999), 187-202. (1999) Zbl0940.46015MR1721824DOI10.1112/S0024610799007711
- DeJarnette, N., 10.1016/j.jmaa.2014.09.064, J. Math. Anal. Appl. 423 (2015), 358-376. (2015) Zbl1333.46034MR3273185DOI10.1016/j.jmaa.2014.09.064
- Dyda, B., 10.4064/sm197-3-3, Stud. Math. 197 (2010), 247-256. (2010) Zbl1202.46037MR2607491DOI10.4064/sm197-3-3
- Eridani, Gunawan, H., Nakai, E., On generalized fractional integral operators, Sci. Math. Jpn. 60 (2004), 539-550. (2004) Zbl1058.42007MR2099586
- Futamura, T., Shimomura, T., 10.1007/s12220-017-9860-x, J. Geom. Anal. 28 (2018), 1233-1244. (2018) Zbl06902266MR3790498DOI10.1007/s12220-017-9860-x
- García-Cuerva, J., Gatto, A. E., 10.4064/sm162-3-5, Stud. Math. 162 (2004), 245-261. (2004) Zbl1045.42006MR2047654DOI10.4064/sm162-3-5
- Gunawan, H., A note on the generalized fractional integral operators, J. Indones. Math. Soc. 9 (2003), 39-43. (2003) Zbl1129.42380MR2013135
- Haj{ł}asz, P., Koskela, P., 10.1090/memo/0688, Mem. Am. Math. Soc. 145 (2000), No. 688, 101 pages. (2000) Zbl0954.46022MR1683160DOI10.1090/memo/0688
- Hedberg, L. I., 10.2307/2039187, Proc. Am. Math. Soc. 36 (1972), 505-510. (1972) Zbl0283.26003MR0312232DOI10.2307/2039187
- Heinonen, J., 10.1007/978-1-4613-0131-8, Universitext, Springer, New York (2001). (2001) Zbl0985.46008MR1800917DOI10.1007/978-1-4613-0131-8
- Hyt{ö}nen, T., 10.5565/PUBLMAT_54210_10, Publ. Mat., Barc. 54 (2010), 485-504. (2010) Zbl1246.30087MR2675934DOI10.5565/PUBLMAT_54210_10
- Lisini, S., 10.1051/cocv/2015020, ESAIM, Control Optim. Calc. Var. 22 (2016), 670-687. (2016) Zbl1348.49048MR3527938DOI10.1051/cocv/2015020
- Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T., 10.2969/jmsj/06230707, J. Math. Soc. Japan 62 (2010), 707-744. (2010) Zbl1200.26007MR2648060DOI10.2969/jmsj/06230707
- Mizuta, Y., Shimomura, T., 10.1524/anly.2000.20.3.201, Analysis, München 20 (2000), 201-223. (2000) Zbl0955.31002MR1778254DOI10.1524/anly.2000.20.3.201
- Mizuta, Y., Shimomura, T., Sobukawa, T., Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces, Osaka J. Math. 46 (2009), 255-271. (2009) Zbl1186.31003MR2531149
- Nakai, E., 10.11650/twjm/1500574952, Taiwanese J. Math. 5 (2001), 587-602. (2001) Zbl0990.26007MR1849780DOI10.11650/twjm/1500574952
- Nakai, E., On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type, Sci. Math. Jpn. 54 (2001), 473-487. (2001) Zbl1007.42013MR1874169
- Nazarov, F., Treil, S., Volberg, A., 10.1155/S1073792897000469, Int. Math. Res. Not. No. 15 (1997), 703-726. (1997) Zbl0889.42013MR1470373DOI10.1155/S1073792897000469
- Nazarov, F., Treil, S., Volberg, A., 10.1155/S1073792898000312, Int. Math. Res. Not. No. 9 (1998), 463-487. (1998) Zbl0918.42009MR1626935DOI10.1155/S1073792898000312
- Ohno, T., Shimomura, T., 10.1007/s10587-014-0095-8, Czech. Math. J. 64 (2014), 209-228. (2014) Zbl1340.31009MR3247456DOI10.1007/s10587-014-0095-8
- Ohno, T., Shimomura, T., 10.1016/j.na.2014.04.008, Nonlinear Anal., Theory Methods Appl., Ser. A 106 (2014), 1-17. (2014) Zbl1306.46039MR3209682DOI10.1016/j.na.2014.04.008
- Ohno, T., Shimomura, T., 10.1007/s10587-015-0187-0, Czech. Math. J. 65 (2015), 435-474. (2015) Zbl1363.46027MR3360438DOI10.1007/s10587-015-0187-0
- O'Neil, R., 10.2307/1994271, Trans. Am. Math. Soc. 115 (1965), 300-328. (1965) Zbl0132.09201MR0194881DOI10.2307/1994271
- Sawano, Y., Shimomura, T., 10.1155/2013/984259, J. Funct. Spaces Appl. 2013 (2013), Article ID 984259, 12 pages. (2013) Zbl1275.46017MR3040574DOI10.1155/2013/984259
- Sawano, Y., Shimomura, T., 10.1007/s13348-013-0082-7, Collect. Math. 64 (2013), 313-350. (2013) Zbl1280.31001MR3084400DOI10.1007/s13348-013-0082-7
- Sawano, Y., Shimomura, T., 10.4171/ZAA/1584, Z. Anal. Anwend. 36 (2017), 159-190. (2017) Zbl1364.26012MR3632252DOI10.4171/ZAA/1584
- Sawano, Y., Shimomura, T., 10.1080/10652469.2017.1318281, Integral Transforms Spec. Funct. 28 (2017), 534-546. (2017) Zbl1372.42011MR3645968DOI10.1080/10652469.2017.1318281
- Tolsa, X., 10.1007/s002080000144, Math. Ann. 319 (2001), 89-149. (2001) Zbl0974.42014MR1812821DOI10.1007/s002080000144
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.