Displaying similar documents to “Boundedness of generalized fractional integral operators on Orlicz spaces near L 1 over metric measure spaces”

Trudinger's inequality for double phase functionals with variable exponents

Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno, Tetsu Shimomura (2021)

Czechoslovak Mathematical Journal

Similarity:

Our aim in this paper is to establish Trudinger’s inequality on Musielak-Orlicz-Morrey spaces L Φ , κ ( G ) under conditions on Φ which are essentially weaker than those considered in a former paper. As an application and example, we show Trudinger’s inequality for double phase functionals Φ ( x , t ) = t p ( x ) + a ( x ) t q ( x ) , where p ( · ) and q ( · ) satisfy log-Hölder conditions and a ( · ) is nonnegative, bounded and Hölder continuous.

Lower bounds for Jung constants of Orlicz sequence spaces

Z. D. Ren (2010)

Annales Polonici Mathematici

Similarity:

A new lower bound for the Jung constant J C ( l ( Φ ) ) of the Orlicz sequence space l ( Φ ) defined by an N-function Φ is found. It is proved that if l ( Φ ) is reflexive and the function tΦ’(t)/Φ(t) is increasing on ( 0 , Φ - 1 ( 1 ) ] , then J C ( l ( Φ ) ) ( Φ - 1 ( 1 / 2 ) ) / ( Φ - 1 ( 1 ) ) . Examples in Section 3 show that the above estimate is better than in Zhang’s paper (2003) in some cases and that the results given in Yan’s paper (2004) are not accurate.

Uniform convexity and associate spaces

Petteri Harjulehto, Peter Hästö (2018)

Czechoslovak Mathematical Journal

Similarity:

We prove that the associate space of a generalized Orlicz space L φ ( · ) is given by the conjugate modular φ * even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling Φ -function is equivalent to a doubling Φ -function. As a consequence, we conclude that L φ ( · ) is uniformly convex if φ and φ * are weakly doubling.

Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators

Sibei Yang (2015)

Czechoslovak Mathematical Journal

Similarity:

Let L : = - Δ + V be a Schrödinger operator on n with n 3 and V 0 satisfying Δ - 1 V L ( n ) . Assume that ϕ : n × [ 0 , ) [ 0 , ) is a function such that ϕ ( x , · ) is an Orlicz function, ϕ ( · , t ) 𝔸 ( n ) (the class of uniformly Muckenhoupt weights). Let w be an L -harmonic function on n with 0 < C 1 w C 2 , where C 1 and C 2 are positive constants. In this article, the author proves that the mapping H ϕ , L ( n ) f w f H ϕ ( n ) is an isomorphism from the Musielak-Orlicz-Hardy space associated with L , H ϕ , L ( n ) , to the Musielak-Orlicz-Hardy space H ϕ ( n ) under some assumptions on ϕ . As applications, the author further...

The space of multipliers and convolutors of Orlicz spaces on a locally compact group

Hasan P. Aghababa, Ibrahim Akbarbaglu, Saeid Maghsoudi (2013)

Studia Mathematica

Similarity:

Let G be a locally compact group, let (φ,ψ) be a complementary pair of Young functions, and let L φ ( G ) and L ψ ( G ) be the corresponding Orlicz spaces. Under some conditions on φ, we will show that for a Banach L φ ( G ) -submodule X of L ψ ( G ) , the multiplier space H o m L φ ( G ) ( L φ ( G ) , X * ) is a dual Banach space with predual L φ ( G ) X : = s p a n ¯ u x : u L φ ( G ) , x X , where the closure is taken in the dual space of H o m L φ ( G ) ( L φ ( G ) , X * ) . We also prove that if φ is a Δ₂-regular N-function, then C v φ ( G ) , the space of convolutors of M φ ( G ) , is identified with the dual of a Banach algebra of functions on G...

Normal structure of Lorentz-Orlicz spaces

Pei-Kee Lin, Huiying Sun (1997)

Annales Polonici Mathematici

Similarity:

Let ϕ: ℝ → ℝ₊ ∪ 0 be an even convex continuous function with ϕ(0) = 0 and ϕ(u) > 0 for all u > 0 and let w be a weight function. u₀ and v₀ are defined by u₀ = supu: ϕ is linear on (0,u), v₀=supv: w is constant on (0,v) (where sup∅ = 0). We prove the following theorem. Theorem. Suppose that Λ ϕ , w ( 0 , ) (respectively, Λ ϕ , w ( 0 , 1 ) ) is an order continuous Lorentz-Orlicz space. (1) Λ ϕ , w has normal structure if and only if u₀ = 0 (respectively, v ϕ ( u ) · w < 2 a n d u < ) . (2) Λ ϕ , w has weakly normal structure if and only if 0 v ϕ ( u ) · w < 2 .

Linear operators on non-locally convex Orlicz spaces

Marian Nowak, Agnieszka Oelke (2008)

Banach Center Publications

Similarity:

We study linear operators from a non-locally convex Orlicz space L Φ to a Banach space ( X , | | · | | X ) . Recall that a linear operator T : L Φ X is said to be σ-smooth whenever u ( o ) 0 in L Φ implies | | T ( u ) | | X 0 . It is shown that every σ-smooth operator T : L Φ X factors through the inclusion map j : L Φ L Φ ̅ , where Φ̅ denotes the convex minorant of Φ. We obtain the Bochner integral representation of σ-smooth operators T : L Φ X . This extends some earlier results of J. J. Uhl concerning the Bochner integral representation of linear operators defined on...

Weighted local Orlicz-Hardy spaces with applications to pseudo-differential operators

Dachun Yang, Sibei Yang

Similarity:

Let Φ be a concave function on (0,∞) of strictly critical lower type index p Φ ( 0 , 1 ] and ω A l o c ( ) (the class of local weights introduced by V. S. Rychkov). We introduce the weighted local Orlicz-Hardy space h ω Φ ( ) via the local grand maximal function. Let ρ ( t ) t - 1 / Φ - 1 ( t - 1 ) for all t ∈ (0,∞). We also introduce the BMO-type space b m o ρ , ω ( ) and establish the duality between h ω Φ ( ) and b m o ρ , ω ( ) . Characterizations of h ω Φ ( ) , including the atomic characterization, the local vertical and the local nontangential maximal function characterizations, are...

On the inclusions of X Φ spaces

Seyyed Mohammad Tabatabaie, Alireza Bagheri Salec (2023)

Mathematica Bohemica

Similarity:

We give some equivalent conditions (independent from the Young functions) for inclusions between some classes of X Φ spaces, where Φ is a Young function and X is a quasi-Banach function space on a σ -finite measure space ( Ω , 𝒜 , μ ) .

Multiparameter ergodic Cesàro-α averages

A. L. Bernardis, R. Crescimbeni, C. Ferrari Freire (2015)

Colloquium Mathematicae

Similarity:

Net (X,ℱ,ν) be a σ-finite measure space. Associated with k Lamperti operators on L p ( ν ) , T , . . . , T k , n ̅ = ( n , . . . , n k ) k and α ̅ = ( α , . . . , α k ) with 0 < α j 1 , we define the ergodic Cesàro-α̅ averages n ̅ , α ̅ f = 1 / ( j = 1 k A n j α j ) i k = 0 n k i = 0 n j = 1 k A n j - i j α j - 1 T k i k T i f . For these averages we prove the almost everywhere convergence on X and the convergence in the L p ( ν ) norm, when n , . . . , n k independently, for all f L p ( d ν ) with p > 1/α⁎ where α = m i n 1 j k α j . In the limit case p = 1/α⁎, we prove that the averages n ̅ , α ̅ f converge almost everywhere on X for all f in the Orlicz-Lorentz space Λ ( 1 / α , φ m - 1 ) with φ ( t ) = t ( 1 + l o g t ) m . To obtain the result in the limit case we need...

Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces

Yoshihiro Mizuta, Tetsu Shimomura (2023)

Czechoslovak Mathematical Journal

Similarity:

Our aim is to establish Sobolev type inequalities for fractional maximal functions M , ν f and Riesz potentials I , α f in weighted Morrey spaces of variable exponent on the half space . We also obtain Sobolev type inequalities for a C 1 function on . As an application, we obtain Sobolev type inequality for double phase functionals with variable exponents Φ ( x , t ) = t p ( x ) + ( b ( x ) t ) q ( x ) , where p ( · ) and q ( · ) satisfy log-Hölder conditions, p ( x ) < q ( x ) for x , and b ( · ) is nonnegative and Hölder continuous of order θ ( 0 , 1 ] .

On uniqueness of distribution of a random variable whose independent copies span a subspace in L p

S. Astashkin, F. Sukochev, D. Zanin (2015)

Studia Mathematica

Similarity:

Let 1 ≤ p < 2 and let L p = L p [ 0 , 1 ] be the classical L p -space of all (classes of) p-integrable functions on [0,1]. It is known that a sequence of independent copies of a mean zero random variable f L p spans in L p a subspace isomorphic to some Orlicz sequence space l M . We give precise connections between M and f and establish conditions under which the distribution of a random variable f L p whose independent copies span l M in L p is essentially unique.

L p - L q boundedness of analytic families of fractional integrals

Valentina Casarino, Silvia Secco (2008)

Studia Mathematica

Similarity:

We consider a double analytic family of fractional integrals S z γ , α along the curve t | t | α , introduced for α = 2 by L. Grafakos in 1993 and defined by ( S z γ , α f ) ( x , x ) : = 1 / Γ ( z + 1 / 2 ) | u - 1 | z ψ ( u - 1 ) f ( x - t , x - u | t | α ) d u | t | γ d t / t , where ψ is a bump function on ℝ supported near the origin, f c ( ² ) , z,γ ∈ ℂ, Re γ ≥ 0, α ∈ ℝ, α ≥ 2. We determine the set of all (1/p,1/q,Re z) such that S z γ , α maps L p ( ² ) to L q ( ² ) boundedly. Our proof is based on product-type kernel arguments. More precisely, we prove that the kernel K - 1 + i θ i ϱ , α is a product kernel on ℝ², adapted to the curve t | t | α ; as a consequence, we show...

Density of smooth maps for fractional Sobolev spaces W s , p into simply connected manifolds when s 1

Pierre Bousquet, Augusto C. Ponce, Jean Van Schaftingen (2013)

Confluentes Mathematici

Similarity:

Given a compact manifold N n ν and real numbers s 1 and 1 p &lt; , we prove that the class C ( Q ¯ m ; N n ) of smooth maps on the cube with values into N n is strongly dense in the fractional Sobolev space W s , p ( Q m ; N n ) when N n is s p simply connected. For s p integer, we prove weak sequential density of C ( Q ¯ m ; N n ) when N n is s p - 1 simply connected. The proofs are based on the existence of a retraction of ν onto N n except for a small subset of N n and on a pointwise estimate of fractional derivatives of composition of maps in W s , p W 1 , s p .

Generalized Lebesgue points for Sobolev functions

Nijjwal Karak (2017)

Czechoslovak Mathematical Journal

Similarity:

In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point x in a metric measure space ( X , d , μ ) is called a generalized Lebesgue point of a measurable function f if the medians of f over the balls B ( x , r ) converge to f ( x ) when r converges to 0 . We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function....

The Young Measure Representation for Weak Cluster Points of Sequences in M-spaces of Measurable Functions

Hôǹg Thái Nguyêñ, Dariusz Pączka (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let ⟨X,Y⟩ be a duality pair of M-spaces X,Y of measurable functions from Ω ⊂ ℝ ⁿ into d . The paper deals with Y-weak cluster points ϕ̅ of the sequence ϕ ( · , z j ( · ) ) in X, where z j : Ω m is measurable for j ∈ ℕ and ϕ : Ω × m d is a Carathéodory function. We obtain general sufficient conditions, under which, for some negligible set A ϕ , the integral I ( ϕ , ν x ) : = m ϕ ( x , λ ) d ν x ( λ ) exists for x Ω A ϕ and ϕ ̅ ( x ) = I ( ϕ , ν x ) on Ω A ϕ , where ν = ν x x Ω is a measurable-dependent family of Radon probability measures on m .

Boundedness of Stein's square functions and Bochner-Riesz means associated to operators on Hardy spaces

Xuefang Yan (2015)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , d , μ ) be a metric measure space endowed with a distance d and a nonnegative Borel doubling measure μ . Let L be a non-negative self-adjoint operator of order m on L 2 ( X ) . Assume that the semigroup e - t L generated by L satisfies the Davies-Gaffney estimate of order m and L satisfies the Plancherel type estimate. Let H L p ( X ) be the Hardy space associated with L . We show the boundedness of Stein’s square function 𝒢 δ ( L ) arising from Bochner-Riesz means associated to L from Hardy spaces H L p ( X ) to L p ( X ) , and also study...

Approximate and L p Peano derivatives of nonintegral order

J. Marshall Ash, Hajrudin Fejzić (2005)

Studia Mathematica

Similarity:

Let n be a nonnegative integer and let u ∈ (n,n+1]. We say that f is u-times Peano bounded in the approximate (resp. L p , 1 ≤ p ≤ ∞) sense at x m if there are numbers f α ( x ) , |α| ≤ n, such that f ( x + h ) - | α | n f α ( x ) h α / α ! is O ( h u ) in the approximate (resp. L p ) sense as h → 0. Suppose f is u-times Peano bounded in either the approximate or L p sense at each point of a bounded measurable set E. Then for every ε > 0 there is a perfect set Π ⊂ E and a smooth function g such that the Lebesgue measure of E∖Π is less than ε and...