Existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions and its applications
Applications of Mathematics (2018)
- Volume: 63, Issue: 4, page 423-437
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBoussandel, Sahbi. "Existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions and its applications." Applications of Mathematics 63.4 (2018): 423-437. <http://eudml.org/doc/294779>.
@article{Boussandel2018,
abstract = {We establish the existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions. The energies associated to these evolution equations are quadratic forms. Our approach is based on application of the Schaefer fixed-point theorem combined with the continuity method.},
author = {Boussandel, Sahbi},
journal = {Applications of Mathematics},
keywords = {existence; anti-periodic boundary condition; Schaefer fixed-point theorem; continuity method; diffusion equation},
language = {eng},
number = {4},
pages = {423-437},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions and its applications},
url = {http://eudml.org/doc/294779},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Boussandel, Sahbi
TI - Existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions and its applications
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 423
EP - 437
AB - We establish the existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions. The energies associated to these evolution equations are quadratic forms. Our approach is based on application of the Schaefer fixed-point theorem combined with the continuity method.
LA - eng
KW - existence; anti-periodic boundary condition; Schaefer fixed-point theorem; continuity method; diffusion equation
UR - http://eudml.org/doc/294779
ER -
References
top- Aizicovici, S., McKibben, M., Reich, S., 10.1016/S0362-546X(99)00192-3, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 43 (2001), 233-251. (2001) Zbl0977.34061MR1790104DOI10.1016/S0362-546X(99)00192-3
- Boussandel, S., 10.1016/j.jde.2010.09.009, J. Differ. Equations 250 (2011), 929-948. (2011) Zbl1209.47020MR2737819DOI10.1016/j.jde.2010.09.009
- Chen, Y., 10.1016/j.jmaa.2005.08.001, J. Math. Anal. Appl. 315 (2006), 337-348. (2006) Zbl1100.34046MR2196551DOI10.1016/j.jmaa.2005.08.001
- Chen, Y., Cho, Y. J., Jung, J. S., 10.1016/j.mcm.2003.06.007, Math. Comput. Modelling 40 (2004), 1123-1130. (2004) Zbl1074.34058MR2113840DOI10.1016/j.mcm.2003.06.007
- Chen, Y., Nieto, J. J., O'Regan, D., 10.1016/j.mcm.2006.12.006, Math. Comput. Modelling 46 (2007), 1183-1190. (2007) Zbl1142.34313MR2376702DOI10.1016/j.mcm.2006.12.006
- Chen, Y., Nieto, J. J., O'Regan, D., 10.1016/j.aml.2010.10.010, Appl. Math. Lett. 24 (2011), 302-307. (2011) Zbl1215.34069MR2741034DOI10.1016/j.aml.2010.10.010
- Chen, Y., O'Regan, D., Agarwal, R. P., 10.1016/j.aml.2010.06.022, Appl. Math. Lett. 23 (2010), 1320-1325. (2010) Zbl1208.34098MR2718504DOI10.1016/j.aml.2010.06.022
- Chen, Y., O'Regan, D., Agarwal, R. P., 10.1007/s12190-010-0463-y, J. Appl. Math. Comput. 38 (2012), 63-70. (2012) Zbl1302.34097MR2886666DOI10.1007/s12190-010-0463-y
- Chen, Y., Wang, X., Xu, H., 10.1016/S0022-247X(02)00288-3, J. Math. Anal. Appl. 273 (2002), 627-636. (2002) Zbl1055.34113MR1932511DOI10.1016/S0022-247X(02)00288-3
- Chill, R., Fašangová, E., Gradient Systems. Lecture Notes of the 13th International Internet Seminar, Matfyzpress, Praha (2010). (2010)
- Haraux, A., 10.1007/BF01171760, Manuscr. Math. 63 (1989), 479-505. (1989) Zbl0684.35010MR0991267DOI10.1007/BF01171760
- Okochi, H., 10.2969/jmsj/04030541, J. Math. Soc. Japan 40 (1988), 541-553. (1988) Zbl0679.35046MR0945351DOI10.2969/jmsj/04030541
- Okochi, H., 10.1016/0022-1236(90)90143-9, J. Funct. Anal. 91 (1990), 246-258. (1990) Zbl0735.35071MR1058971DOI10.1016/0022-1236(90)90143-9
- Okochi, H., 10.1016/0362-546X(90)90105-P, Nonlinear Anal., Theory Methods Appl. 14 (1990), 771-783. (1990) Zbl0715.35091MR1049120DOI10.1016/0362-546X(90)90105-P
- Souplet, Ph., An optimal uniqueness condition for the antiperiodic solutions of parabolic evolution equations, C. R. Acad. Sci., Paris, Sér. I 319 (1994), 1037-1041 French. (1994) Zbl0809.35036MR1305673
- Souplet, Ph., 10.1016/S0362-546X(97)00477-X, Nonlinear Anal., Theory Methods Appl. 32 (1998), 279-286. (1998) Zbl0892.35078MR1491628DOI10.1016/S0362-546X(97)00477-X
- Zhenhai, L., 10.1016/j.jfa.2009.11.018, J. Funct. Anal. 258 (2010), 2026-2033. (2010) Zbl1184.35184MR2578462DOI10.1016/j.jfa.2009.11.018
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.