Existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions and its applications

Sahbi Boussandel

Applications of Mathematics (2018)

  • Volume: 63, Issue: 4, page 423-437
  • ISSN: 0862-7940

Abstract

top
We establish the existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions. The energies associated to these evolution equations are quadratic forms. Our approach is based on application of the Schaefer fixed-point theorem combined with the continuity method.

How to cite

top

Boussandel, Sahbi. "Existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions and its applications." Applications of Mathematics 63.4 (2018): 423-437. <http://eudml.org/doc/294779>.

@article{Boussandel2018,
abstract = {We establish the existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions. The energies associated to these evolution equations are quadratic forms. Our approach is based on application of the Schaefer fixed-point theorem combined with the continuity method.},
author = {Boussandel, Sahbi},
journal = {Applications of Mathematics},
keywords = {existence; anti-periodic boundary condition; Schaefer fixed-point theorem; continuity method; diffusion equation},
language = {eng},
number = {4},
pages = {423-437},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions and its applications},
url = {http://eudml.org/doc/294779},
volume = {63},
year = {2018},
}

TY - JOUR
AU - Boussandel, Sahbi
TI - Existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions and its applications
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 4
SP - 423
EP - 437
AB - We establish the existence of solutions for evolution equations in Hilbert spaces with anti-periodic boundary conditions. The energies associated to these evolution equations are quadratic forms. Our approach is based on application of the Schaefer fixed-point theorem combined with the continuity method.
LA - eng
KW - existence; anti-periodic boundary condition; Schaefer fixed-point theorem; continuity method; diffusion equation
UR - http://eudml.org/doc/294779
ER -

References

top
  1. Aizicovici, S., McKibben, M., Reich, S., 10.1016/S0362-546X(99)00192-3, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 43 (2001), 233-251. (2001) Zbl0977.34061MR1790104DOI10.1016/S0362-546X(99)00192-3
  2. Boussandel, S., 10.1016/j.jde.2010.09.009, J. Differ. Equations 250 (2011), 929-948. (2011) Zbl1209.47020MR2737819DOI10.1016/j.jde.2010.09.009
  3. Chen, Y., 10.1016/j.jmaa.2005.08.001, J. Math. Anal. Appl. 315 (2006), 337-348. (2006) Zbl1100.34046MR2196551DOI10.1016/j.jmaa.2005.08.001
  4. Chen, Y., Cho, Y. J., Jung, J. S., 10.1016/j.mcm.2003.06.007, Math. Comput. Modelling 40 (2004), 1123-1130. (2004) Zbl1074.34058MR2113840DOI10.1016/j.mcm.2003.06.007
  5. Chen, Y., Nieto, J. J., O'Regan, D., 10.1016/j.mcm.2006.12.006, Math. Comput. Modelling 46 (2007), 1183-1190. (2007) Zbl1142.34313MR2376702DOI10.1016/j.mcm.2006.12.006
  6. Chen, Y., Nieto, J. J., O'Regan, D., 10.1016/j.aml.2010.10.010, Appl. Math. Lett. 24 (2011), 302-307. (2011) Zbl1215.34069MR2741034DOI10.1016/j.aml.2010.10.010
  7. Chen, Y., O'Regan, D., Agarwal, R. P., 10.1016/j.aml.2010.06.022, Appl. Math. Lett. 23 (2010), 1320-1325. (2010) Zbl1208.34098MR2718504DOI10.1016/j.aml.2010.06.022
  8. Chen, Y., O'Regan, D., Agarwal, R. P., 10.1007/s12190-010-0463-y, J. Appl. Math. Comput. 38 (2012), 63-70. (2012) Zbl1302.34097MR2886666DOI10.1007/s12190-010-0463-y
  9. Chen, Y., Wang, X., Xu, H., 10.1016/S0022-247X(02)00288-3, J. Math. Anal. Appl. 273 (2002), 627-636. (2002) Zbl1055.34113MR1932511DOI10.1016/S0022-247X(02)00288-3
  10. Chill, R., Fašangová, E., Gradient Systems. Lecture Notes of the 13th International Internet Seminar, Matfyzpress, Praha (2010). (2010) 
  11. Haraux, A., 10.1007/BF01171760, Manuscr. Math. 63 (1989), 479-505. (1989) Zbl0684.35010MR0991267DOI10.1007/BF01171760
  12. Okochi, H., 10.2969/jmsj/04030541, J. Math. Soc. Japan 40 (1988), 541-553. (1988) Zbl0679.35046MR0945351DOI10.2969/jmsj/04030541
  13. Okochi, H., 10.1016/0022-1236(90)90143-9, J. Funct. Anal. 91 (1990), 246-258. (1990) Zbl0735.35071MR1058971DOI10.1016/0022-1236(90)90143-9
  14. Okochi, H., 10.1016/0362-546X(90)90105-P, Nonlinear Anal., Theory Methods Appl. 14 (1990), 771-783. (1990) Zbl0715.35091MR1049120DOI10.1016/0362-546X(90)90105-P
  15. Souplet, Ph., An optimal uniqueness condition for the antiperiodic solutions of parabolic evolution equations, C. R. Acad. Sci., Paris, Sér. I 319 (1994), 1037-1041 French. (1994) Zbl0809.35036MR1305673
  16. Souplet, Ph., 10.1016/S0362-546X(97)00477-X, Nonlinear Anal., Theory Methods Appl. 32 (1998), 279-286. (1998) Zbl0892.35078MR1491628DOI10.1016/S0362-546X(97)00477-X
  17. Zhenhai, L., 10.1016/j.jfa.2009.11.018, J. Funct. Anal. 258 (2010), 2026-2033. (2010) Zbl1184.35184MR2578462DOI10.1016/j.jfa.2009.11.018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.