The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Complete solution of the Diophantine equation x y + y x = z z

A note on the article by F. Luca “On the system of Diophantine equations a ² + b ² = ( m ² + 1 ) r and a x + b y = ( m ² + 1 ) z ” (Acta Arith. 153 (2012), 373-392)

Takafumi Miyazaki (2014)

Acta Arithmetica

Similarity:

Let r,m be positive integers with r > 1, m even, and A,B be integers satisfying A + B ( - 1 ) = ( m + ( - 1 ) ) r . We prove that the Diophantine equation | A | x + | B | y = ( m ² + 1 ) z has no positive integer solutions in (x,y,z) other than (x,y,z) = (2,2,r), whenever r > 10 74 or m > 10 34 . Our result is an explicit refinement of a theorem due to F. Luca.

Diophantine equations involving factorials

Horst Alzer, Florian Luca (2017)

Mathematica Bohemica

Similarity:

We study the Diophantine equations ( k ! ) n - k n = ( n ! ) k - n k and ( k ! ) n + k n = ( n ! ) k + n k , where k and n are positive integers. We show that the first one holds if and only if k = n or ( k , n ) = ( 1 , 2 ) , ( 2 , 1 ) and that the second one holds if and only if k = n .

A remark on a Diophantine equation of S. S. Pillai

Azizul Hoque (2024)

Czechoslovak Mathematical Journal

Similarity:

S. S. Pillai proved that for a fixed positive integer a , the exponential Diophantine equation x y - y x = a , min ( x , y ) > 1 , has only finitely many solutions in integers x and y . We prove that when a is of the form 2 z 2 , the above equation has no solution in integers x and y with gcd ( x , y ) = 1 .

On the Diophantine equation j = 1 k j F j p = F n q

Gökhan Soydan, László Németh, László Szalay (2018)

Archivum Mathematicum

Similarity:

Let F n denote the n t h term of the Fibonacci sequence. In this paper, we investigate the Diophantine equation F 1 p + 2 F 2 p + + k F k p = F n q in the positive integers k and n , where p and q are given positive integers. A complete solution is given if the exponents are included in the set { 1 , 2 } . Based on the specific cases we could solve, and a computer search with p , q , k 100 we conjecture that beside the trivial solutions only F 8 = F 1 + 2 F 2 + 3 F 3 + 4 F 4 , F 4 2 = F 1 + 2 F 2 + 3 F 3 , and F 4 3 = F 1 3 + 2 F 2 3 + 3 F 3 3 satisfy the title equation.

On some Diophantine equations involving balancing numbers

Euloge Tchammou, Alain Togbé (2021)

Archivum Mathematicum

Similarity:

In this paper, we find all the solutions of the Diophantine equation B 1 p + 2 B 2 p + + k B k p = B n q in positive integer variables ( k , n ) , where B i is the i t h balancing number if the exponents p , q are included in the set { 1 , 2 } .

On the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2

Ruizhou Tong (2021)

Czechoslovak Mathematical Journal

Similarity:

Let p be an odd prime. By using the elementary methods we prove that: (1) if 2 x , p ± 3 ( mod 8 ) , the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2 has no positive integer solution except when p = 3 or p is of the form p = 2 a 0 2 + 1 , where a 0 > 1 is an odd positive integer. (2) if 2 x , 2 y , y 2 , 4 , then the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2 has no positive integer solution.

Mersenne numbers as a difference of two Lucas numbers

Murat Alan (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let ( L n ) n 0 be the Lucas sequence. We show that the Diophantine equation L n - L m = M k has only the nonnegative integer solutions ( n , m , k ) = ( 2 , 0 , 1 ) , ( 3 , 1 , 2 ) , ( 3 , 2 , 1 ) , ( 4 , 3 , 2 ) , ( 5 , 3 , 3 ) , ( 6 , 2 , 4 ) , ( 6 , 5 , 3 ) where M k = 2 k - 1 is the k th Mersenne number and n > m .

Finiteness results for Diophantine triples with repdigit values

Attila Bérczes, Florian Luca, István Pink, Volker Ziegler (2016)

Acta Arithmetica

Similarity:

Let g ≥ 2 be an integer and g be the set of repdigits in base g. Let g be the set of Diophantine triples with values in g ; that is, g is the set of all triples (a,b,c) ∈ ℕ³ with c < b < a such that ab + 1, ac + 1 and bc + 1 lie in the set g . We prove effective finiteness results for the set g .

The number of solutions to the generalized Pillai equation ± r a x ± s b y = c .

Reese Scott, Robert Styer (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We consider N , the number of solutions ( x , y , u , v ) to the equation ( - 1 ) u r a x + ( - 1 ) v s b y = c in nonnegative integers x , y and integers u , v { 0 , 1 } , for given integers a &gt; 1 , b &gt; 1 , c &gt; 0 , r &gt; 0 and s &gt; 0 . When gcd ( r a , s b ) = 1 , we show that N 3 except for a finite number of cases all of which satisfy max ( a , b , r , s , x , y ) &lt; 2 · 10 15 for each solution; when gcd ( a , b ) &gt; 1 , we show that N 3 except for three infinite families of exceptional cases. We find several different ways to generate an infinite number of cases giving N = 3 solutions.

A note on the weighted Khintchine-Groshev Theorem

Mumtaz Hussain, Tatiana Yusupova (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let W ( m , n ; ψ ̲ ) denote the set of ψ 1 , ... , ψ n –approximable points in m n . The classical Khintchine–Groshev theorem assumes a monotonicity condition on the approximating functions ψ ̲ . Removing monotonicity from the Khintchine–Groshev theorem is attributed to different authors for different cases of m and n . It can not be removed for m = n = 1 as Duffin–Schaeffer provided the counter example. We deal with the only remaining case m = 2 and thereby remove all unnecessary conditions from the Khintchine–Groshev theorem. ...

The exceptional set for Diophantine inequality with unlike powers of prime variables

Wenxu Ge, Feng Zhao (2018)

Czechoslovak Mathematical Journal

Similarity:

Suppose that λ 1 , λ 2 , λ 3 , λ 4 are nonzero real numbers, not all negative, δ > 0 , 𝒱 is a well-spaced set, and the ratio λ 1 / λ 2 is algebraic and irrational. Denote by E ( 𝒱 , N , δ ) the number of v 𝒱 with v N such that the inequality | λ 1 p 1 2 + λ 2 p 2 3 + λ 3 p 3 4 + λ 4 p 4 5 - v | < v - δ has no solution in primes p 1 , p 2 , p 3 , p 4 . We show that E ( 𝒱 , N , δ ) N 1 + 2 δ - 1 / 72 + ε for any ε > 0 .

A diophantine equation involving special prime numbers

Stoyan Dimitrov (2023)

Czechoslovak Mathematical Journal

Similarity:

Let [ · ] be the floor function. In this paper, we prove by asymptotic formula that when 1 < c < 3441 2539 , then every sufficiently large positive integer N can be represented in the form N = [ p 1 c ] + [ p 2 c ] + [ p 3 c ] + [ p 4 c ] + [ p 5 c ] , where p 1 , p 2 , p 3 , p 4 , p 5 are primes such that p 1 = x 2 + y 2 + 1 .