On the Approximative Construction of the Eigenvectors Corresponding to a Pair of Complex Conjugated Eigenvalues
Matematicko-fyzikálny časopis (1964)
- Volume: 14, Issue: 4, page 277-288
- ISSN: 0232-0525
Access Full Article
topHow to cite
topMarek, Ivo. "On the Approximative Construction of the Eigenvectors Corresponding to a Pair of Complex Conjugated Eigenvalues." Matematicko-fyzikálny časopis 14.4 (1964): 277-288. <http://eudml.org/doc/29570>.
@article{Marek1964,
author = {Marek, Ivo},
journal = {Matematicko-fyzikálny časopis},
language = {eng},
number = {4},
pages = {277-288},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On the Approximative Construction of the Eigenvectors Corresponding to a Pair of Complex Conjugated Eigenvalues},
url = {http://eudml.org/doc/29570},
volume = {14},
year = {1964},
}
TY - JOUR
AU - Marek, Ivo
TI - On the Approximative Construction of the Eigenvectors Corresponding to a Pair of Complex Conjugated Eigenvalues
JO - Matematicko-fyzikálny časopis
PY - 1964
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 14
IS - 4
SP - 277
EP - 288
LA - eng
UR - http://eudml.org/doc/29570
ER -
References
top- Brown K. M., Henrici P., Sign Wave Analysis in Matrix Eigenvalue Prohlems, Math. of Comp. 16 (1962), 79, 291-300. (1962) MR0169363
- Гaнтмaxep Ф. P., Teopuя мampuц, Mocквa 1953. (1953)
- Marek I., C-convergence of Iterations of Linear Bounded Operators, Comment. Math. Univ. Carol 2, 3 (1961), 22-24. (1961) Zbl0195.42903
- Capымcaкoв T. A., Ocнoвы meopuu npoцeccoв Mapкoвa, Mocквa 1954. (1954)
- Stiefel E. L., Kernel Polynomials in Linear Algebra and their Numerical Applications, NBS Appl. Math. Ser. 49 (1958), 1-22. (1958) Zbl0171.35703MR0092214
- Taylor A. E., Introduction to Functional Analysis, J. Wiley publ., New Yoгk 1958. (1958) Zbl0081.10202MR0098966
Citations in EuDML Documents
top- Ivo Marek, A note on -stochastic operators
- Ivo Marek, On -positive elements of the spectral resolution of a -positive operator
- Ivo Marek, On the polynomial eigenvalue problem with positive operators and location of the spectral radius
- Ivo Marek, Spektrale Eigenschaften der -positiven Operatoren und Einschließungssätze für den Spektralradius
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.