On the polynomial eigenvalue problem with positive operators and location of the spectral radius
Aplikace matematiky (1969)
- Volume: 14, Issue: 2, page 146-159
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMarek, Ivo. "On the polynomial eigenvalue problem with positive operators and location of the spectral radius." Aplikace matematiky 14.2 (1969): 146-159. <http://eudml.org/doc/14586>.
@article{Marek1969,
abstract = {The purpose of this article is to give some estimates for the spectral radius of the polynomial eigenvalue problem, i.e. to derive some estimates for the singularity of the operator-function $F$, $F(\lambda )=\lambda ^mA_0-\sum ^m_\{k=1\} \lambda ^\{m-k\}A_k$ with the maximal absolute value. It is assumed that $A_1,\ldots ,A_m,A^\{-1\}_0$ are bounded linear operators mapping a Banach space into itself. Further, it is assumed that the operators $B_j$, where $B_j=A^\{-1\}_0 A_j, j=1,2,\ldots ,m$, leave a cone invariant.},
author = {Marek, Ivo},
journal = {Aplikace matematiky},
keywords = {functional analysis},
language = {eng},
number = {2},
pages = {146-159},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the polynomial eigenvalue problem with positive operators and location of the spectral radius},
url = {http://eudml.org/doc/14586},
volume = {14},
year = {1969},
}
TY - JOUR
AU - Marek, Ivo
TI - On the polynomial eigenvalue problem with positive operators and location of the spectral radius
JO - Aplikace matematiky
PY - 1969
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 14
IS - 2
SP - 146
EP - 159
AB - The purpose of this article is to give some estimates for the spectral radius of the polynomial eigenvalue problem, i.e. to derive some estimates for the singularity of the operator-function $F$, $F(\lambda )=\lambda ^mA_0-\sum ^m_{k=1} \lambda ^{m-k}A_k$ with the maximal absolute value. It is assumed that $A_1,\ldots ,A_m,A^{-1}_0$ are bounded linear operators mapping a Banach space into itself. Further, it is assumed that the operators $B_j$, where $B_j=A^{-1}_0 A_j, j=1,2,\ldots ,m$, leave a cone invariant.
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/14586
ER -
References
top- K. P. Hadeler, 10.1007/BF00250191, Arch. Rational Mech. Anal. 20 (1965) 72-80. (1965) Zbl0136.12601MR0184419DOI10.1007/BF00250191
- M. A. Krasnoselski, Положительные решения операторных уравнений, (Positive Solutions of Operator Equations.) Gostechizdat, Moscow 1962. (1962) MR0145331
- M. G. Krejn M. A. Rutman, Линейные операторы оставлающие инвариантным конус в пространстве Банаха, (Linear operators leaving a cone invariant in a Banach space.) Uspehi Mat. Nauk 3 (1948), 3-95. (1948)
- I. Marek, Přibližné stanovení spektrálního poloměru kladného nerozložitelného zobrazení, (Spektralradius einer positiven unzerlegbaren Abbildung). Apl. mat. 12 (1967), 351 - 363. (1967) MR0225191
- I. Marek, A note on -positive operators, Commen. Math. Univ. Carolinae 4 (1963), 137-146. (1963) MR0167843
- I. Marek, On the approximate construction of eigenvectors corresponding to a pair of complex conjugated eigenvalues, Mat.-Fyz. časopis Sloven. Akad. Vied 14 (1964), 277-288. (1964) MR0191081
- I. Marek, Spektraleigenschaften der -positiven Operatoren und Einschliessungssätze für den Spektralradius, Czechoslovak Math. J. 16 (1966), 493 - 517. (1966) MR0217622
- I. Marek, Über einen speziellen Typus der linearen Gleichungen im Hilbertschen Raume, Časopis pěst. mat. 89 (1964), 155-172. (1964) Zbl0187.38202MR0185443
- I. Marek, 10.1137/0115044, SIAM J. Appl. Math. 15 (1967), 484-494. (1967) MR0233176DOI10.1137/0115044
- P. H. Müller, Eine neue Methode zur Behandlung nichtlinearer Eigenwertaufgaben, Math. Z. 70 (1959), 381-406. (1959) MR0105024
- I. Sawashima, On spectral properties of some positive operators, Natur. Sci. Rep. Ochanomizu Univ. 15 (1964), 55-64. (1964) Zbl0138.07801MR0187096
- H. Schaefer, 10.1007/BF01236904, Arch. Math. 11 (1960), 40-43. (1960) Zbl0093.12402MR0112059DOI10.1007/BF01236904
- H. Schaefer, 10.2140/pjm.1960.10.1009, Pacific J. Math. 10 (1960), 1009-1019. (1960) MR0115090DOI10.2140/pjm.1960.10.1009
- T. Yamamoto, 10.1007/BF02162977, Numer. Math. 8 (1966), 324-333. (1966) Zbl0163.38801MR0218011DOI10.1007/BF02162977
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.