Categories of results in variable Lebesgue spaces theory

Alberto Fiorenza

Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche (2019)

  • Volume: 86, Issue: 1, page 79-102
  • ISSN: 0370-3568

Abstract

top
Variable (exponent) Lebesgue spaces represent a relevant research area within the theory of Banach function spaces. Much attention is devoted to look for sufficient conditions on the variable exponent to establish the assertions within the theory. In this Note we try to show the beauty of the research in this field, mainly quoting some known results organized into “categories", each of them characterized by a common typology of conditions on the variable exponent. New results involve the failure of rearrangement-invariant property, the rearrangement of the exponent, and a generalization of a formula known for constant exponents. Riassunto – Gli spazi di Lebesgue con esponente variabile rappresentano un set

How to cite

top

Fiorenza, Alberto. "Categories of results in variable Lebesgue spaces theory." Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche 86.1 (2019): 79-102. <http://eudml.org/doc/296414>.

@article{Fiorenza2019,
abstract = {Variable (exponent) Lebesgue spaces represent a relevant research area within the theory of Banach function spaces. Much attention is devoted to look for sufficient conditions on the variable exponent to establish the assertions within the theory. In this Note we try to show the beauty of the research in this field, mainly quoting some known results organized into “categories", each of them characterized by a common typology of conditions on the variable exponent. New results involve the failure of rearrangement-invariant property, the rearrangement of the exponent, and a generalization of a formula known for constant exponents. Riassunto – Gli spazi di Lebesgue con esponente variabile rappresentano un set},
author = {Fiorenza, Alberto},
journal = {Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche},
keywords = {Classical Lebesgue spaces; variable exponents; measurable functions},
language = {eng},
month = {12},
number = {1},
pages = {79-102},
publisher = {Società Nazione di Scienze, Lettere e Arti in Napoli; Giannini},
title = {Categories of results in variable Lebesgue spaces theory},
url = {http://eudml.org/doc/296414},
volume = {86},
year = {2019},
}

TY - JOUR
AU - Fiorenza, Alberto
TI - Categories of results in variable Lebesgue spaces theory
JO - Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche
DA - 2019/12//
PB - Società Nazione di Scienze, Lettere e Arti in Napoli; Giannini
VL - 86
IS - 1
SP - 79
EP - 102
AB - Variable (exponent) Lebesgue spaces represent a relevant research area within the theory of Banach function spaces. Much attention is devoted to look for sufficient conditions on the variable exponent to establish the assertions within the theory. In this Note we try to show the beauty of the research in this field, mainly quoting some known results organized into “categories", each of them characterized by a common typology of conditions on the variable exponent. New results involve the failure of rearrangement-invariant property, the rearrangement of the exponent, and a generalization of a formula known for constant exponents. Riassunto – Gli spazi di Lebesgue con esponente variabile rappresentano un set
LA - eng
KW - Classical Lebesgue spaces; variable exponents; measurable functions
UR - http://eudml.org/doc/296414
ER -

References

top
  1. Acerbi, E. and Mingione, G.. Regularity results for electrorheological fluids: the stationary case. C. R. Math. Acad. Sci. Paris, 334(9):817–822, 2002. Zbl1017.76098MR1905047DOI10.1016/S1631-073X(02)02337-3
  2. Acerbi, E. and Mingione, G.. Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal., 164(3):213–259, 2002. Zbl1038.76058MR1930392DOI10.1007/s00205-002-0208-7
  3. Acerbi, E. and Mingione, G.. Gradient estimates for the p ( x ) -Laplacean system. J. Reine Angew. Math., 584:117–148, 2005. Zbl1093.76003MR2155087DOI10.1515/crll.2005.2005.584.117
  4. Ahmida, Y., Chlebicka, I., Gwiazda, P., and Youssfi, A.. Gossez’s approximation theorems in Musielak-Orlicz-Sobolev spaces. J. Funct. Anal., 275(9):2538–2571, 2018. Zbl1405.42042MR3847479DOI10.1016/j.jfa.2018.05.015
  5. Almeida, A., Diening, L., and Hästö, P.. Homogeneous variable exponent Besov and Triebel- Lizorkin spaces. Math. Nachr., 291(8-9):1177–1190, 2018. Zbl1397.42010MR3817312DOI10.1002/mana.201700076
  6. Amaziane, B., Pankratov, L., and Piatnitski, A.. Nonlinear flow through double porosity media in variable exponent Sobolev spaces. Nonlinear Anal. Real World Appl., 10(4):2521–2530, 2009. Zbl1163.35410MR2508463DOI10.1016/j.nonrwa.2008.05.008
  7. Ambrosio, L., Fusco, N., and Pallara, D.. Functions of bounded variation and free discontinu- ity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. Zbl0957.49001MR1857292
  8. Anatriello, G., Chill, R., and Fiorenza, A.. Identification of fully measurable grand Lebesgue spaces. J. Funct. Spaces, pages 3, Art. ID 3129186, 2017. Zbl1386.46029MR3713073DOI10.1155/2017/3129186
  9. Anatriello, G., Fiorenza, A., and Vincenzi, G.. Banach function norms via Cauchy polynomials and applications. Internat. J. Math., 26(10), pages 20, 1550083, 2015. Zbl1345.46003MR3401968DOI10.1142/S0129167X15500834
  10. Antontsev, S. N. and Shmarev, S. I.. Evolution PDEs with nonstandard growth conditions, volume 4 of Atlantis Studies in Differential Equations. Existence, uniqueness, localization, blow-up. Atlantis Press, Paris, 2015. Zbl1410.35001MR3328376DOI10.2991/978-94-6239-112-3
  11. Antontsev, S. N. and Shmarev, S. I.. A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal., 60(3):515–545, 2005. Zbl1066.35045MR2103951DOI10.1016/j.na.2004.09.026
  12. Baroni, P., Colombo, M., and Mingione, G.. Nonautonomous functionals, borderline cases and related function classes. Algebra i Analiz, 27(3):6–50, 2015. Zbl1335.49057MR3570955DOI10.1090/spmj/1392
  13. Baroni, P., Colombo, M., and Mingione, G.. Harnack inequalities for double phase functionals. Nonlinear Anal., 121:206–222, 2015. Zbl1321.49059MR3348922DOI10.1016/j.na.2014.11.001
  14. Baruah, D., Harjulehto, P., and Hästö, P.. Capacities in generalized Orlicz spaces. J. Funct. Spaces, pages 10, Art. ID 8459874, 2018. Zbl1409.46024MR3864628DOI10.1155/2018/8459874
  15. Bennett, C. and Sharpley, R.. Interpolation of Operators, volume 129 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1988. Zbl0647.46057MR928802
  16. Birnbaum, Z. W. and Orlicz, W.. Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Stud. Math., 3:1–67, 1931. Zbl0003.25202
  17. Blomgren, P., Chan, T., Mulet, P., and Wong, C. K.. Total variation image restoration: numerical methods and extensions. In Proceedings of the 1997 IEEE International Conference on Image Processing, volume III, pages 384–387, 1997. MR1661966
  18. Brezis, H.. Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris, 1983. Théorie et applications.[Theory and applications]. MR697382
  19. Brezis, H.. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011. Zbl1220.46002MR2759829
  20. Capone, C., Cruz-Uribe, D., and Fiorenza, A.. The fractional maximal operator and fractional integrals on variable L p spaces. Rev. Mat. Iberoam., 23(3):743–770, 2007. Zbl1213.42063MR2414490DOI10.4171/RMI/511
  21. Castillo, R. E. and Rafeiro, H.. An introductory course in Lebesgue spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, [Cham], 2016. Zbl1352.46003MR3497415DOI10.1007/978-3-319-30034-4
  22. Çekiç, B., Kalinin, A. V., Mashiyev, R. A., and Avci, M.. l p ( x ) ( Ω ) -estimates for vector fields and some applications to magnetostatics problems. J. Math. Anal. Appl., 389(2):838–851, 2012. Zbl1234.35192MR2879262DOI10.1016/j.jmaa.2011.12.029
  23. Colombo, M. and Mingione, G.. Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal., 218(1):219–273, 2015. Zbl1325.49042MR3360738DOI10.1007/s00205-015-0859-9
  24. Cruz-Uribe, D., Diening, L., and Fiorenza, A.. A new proof of the boundedness of maximal operators on variable Lebesgue spaces. Boll. Unione Mat. Ital. (9), 2(1):151–173, 2009. Zbl1207.42011MR2493649
  25. Cruz-Uribe, D., Di Fratta, G., and Fiorenza, A.. Modular inequalities for the maximal operator in variable Lebesgue spaces. Nonlinear Anal., 177(part A):299–311, 2018. Zbl1412.42047MR3865200DOI10.1016/j.na.2018.01.007
  26. Cruz-Uribe, D. and Fiorenza, A.. Approximate identities in variable L p spaces. Math. Nachr., 280(3):256–270, 2007. Zbl1178.42022MR2292148DOI10.1002/mana.200410479
  27. Cruz-Uribe, D. V. and Fiorenza, A.. Variable Lebesgue spaces. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Heidelberg, 2013. Foundations and harmonic analysis. Zbl1268.46002MR3026953DOI10.1007/978-3-0348-0548-3
  28. Cruz-Uribe, D., Fiorenza, A., Martell,, J. M. and Pérez, C.. The boundedness of classical operators on variable L p spaces. Ann. Acad. Sci. Fenn. Math., 31(1):239–264, 2006. Zbl1100.42012MR2210118
  29. Cruz-Uribe, D., Fiorenza,, A. and Neugebauer, C. J.. The maximal function on variable L p spaces. Ann. Acad. Sci. Fenn. Math., 28(1):223–238, 2003. See also errata [30]. Zbl1037.42023MR1976842
  30. Cruz-Urib, D.e, Fiorenza,, A. and Neugebauer, C. J.. Corrections to: “The maximal function on variable L p spaces” [Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223–238; ]. Ann. Acad. Sci. Fenn. Math., 29(1):247–249, 2004. Zbl1064.42500MR2041952
  31. Cruz-Uribe, D. V., Fiorenza, A., Ruzhansky,, M. and Wirth, J.. Lebesgu, Variablee spaces and hyperbolic systems. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser/Springer, Basel, 2014. Selected lecture notes from the Advanced Courses on Approximation Theory and Fourier Analysis held at the Centre de Recerca Matemàtica, Barcelona, November 7–11, 2011, Edited by Sergey Tikhonov. MR3364250
  32. Cruz-Uribe, D. and Hästö, P.. Extrapolation and interpolation in generalized Orlicz spaces. Trans. Amer. Math. Soc., 370(6):4323–4349, 2018. Zbl1391.46037MR3811530DOI10.1090/tran/7155
  33. Cruz-Uribe, D., Martell,, J. M. and Pérez, C.. Weights, extrapolation and the theory of Rubio de Francia, volume 215 of Operator Theory: Advances and Applications. Birkhäuser/Springer, [Cham], 2011. Zbl1234.46003MR2797562DOI10.1007/978-3-0348-0072-3
  34. D’Aristotile, A. M. and Fiorenza, A.. A topology on inequalities. Electron. J. Differential Equations, pages 22, No. 85, 2006. Zbl1124.46020MR2240833
  35. DiBenedetto, E.. Real analysis. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Boston, Inc., Boston, MA, 2002. MR1897317DOI10.1007/978-1-4612-0117-5
  36. Diening, L.. Maximal function on generalized Lebesgue spaces L p ( ) . Math. Inequal. Appl., 7(2):245–253, 2004. Zbl1071.42014MR2057643DOI10.7153/mia-07-27
  37. Diening, L.. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math., 129(8):657–700, 2005. Zbl1096.46013MR2166733DOI10.1016/j.bulsci.2003.10.003
  38. Diening, L.. Lebesgue and Sobolev Spaces with Variable Exponent. Habilitation, Universität Freiburg, 2007. 
  39. Diening, L., Harjulehto, P., Hästö,, P. and Růžička, M.. Lebesgue and Sobolev spaces with variable exponents, volume 2017 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011. Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
  40. Diening, L. and Růžička, M.. Calderón-Zygmund operators on generalized Lebesgue spaces L p ( ) and problems related to fluid dynamics. J. Reine Angew. Math., 563:197–220, 2003. Zbl1072.76071MR2009242DOI10.1515/crll.2003.081
  41. Diening, L. and Růžička, M.. Integral operators on the halfspace in generalized Lebesgue spaces L p ( ) . I. J. Math. Anal. Appl., 298(2):559–571, 2004. Zbl1128.47044MR2086975DOI10.1016/j.jmaa.2004.05.048
  42. Diening, L. and Růžička, M.. Integral operators on the halfspace in generalized Lebesgue spaces L p ( ) . II. J. Math. Anal. Appl., 298(2):572–588, 2004. Zbl1128.47044MR2086976DOI10.1016/j.jmaa.2004.05.049
  43. Diening, L. and Růžička, M.. Non-Newtonian fluids and function spaces. In NAFSA 8— Nonlinear analysis, function spaces and applications. Vol. 8, pages 94–143. Czech. Acad. Sci., Prague, 2007. Zbl1289.35104MR2657118
  44. Diening, L., Harjulehto, P., Hästö, P., Mizuta,, Y. and Shimomura, T.. Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math., 34(2):503–522, 2009. Zbl1180.42010MR2553809
  45. Duoandikoetxea, J.. Fourier Analysis, volume 29 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. Translated and revised from the 1995 Spanish original by David Cruz-Uribe. Zbl0969.42001MR1800316DOI10.1090/gsm/029
  46. Edmunds, D. E., Lang,, J. and Méndez, O.. Differential operators on spaces of variable integrability. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014. Zbl1336.46003MR3308513DOI10.1142/9124
  47. Edmunds, D. E., Lang,, J. and Nekvinda, A.. On L p ( x ) norms. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455(1981):219–225, 1999. Zbl0953.46018MR1700499DOI10.1098/rspa.1999.0309
  48. Edmunds, D. E. and Meskhi, A.. Potential-type operators in L p ( x ) spaces. Z. Anal. Anwendungen, 21(3):681–690, 2002. Zbl1031.46033MR1929426DOI10.4171/ZAA/1102
  49. Edmunds, D. E. and Rákosník, J.. Density of smooth functions in W k , p ( x ) ( Ω ) . Proc. Roy. Soc. London Ser. A, 437(1899):229–236, 1992. Zbl0779.46027MR1177754DOI10.1098/rspa.1992.0059
  50. El Hamidi, A.. Existence results to elliptic systems with nonstandard growth conditions. J. Math. Anal. Appl., 300(1):30–42, 2004. Zbl1148.35316MR2100236DOI10.1016/j.jmaa.2004.05.041
  51. Hästö, P.. The maximal operator on generalized Orlicz spaces. J. Funct. Anal., 269(12):4038–4048, 2015. See also corrigendum [52]. Zbl1338.47032MR3418078DOI10.1016/j.jfa.2015.10.002
  52. Hästö, P.. Corrigendum to “The maximal operator on generalized Orlicz spaces" [J. Funct. Anal. 269 (2015) 4038–4048]. J. Funct. Anal., 271(1):240–243, 2016. Zbl06579053MR3494250DOI10.1016/j.jfa.2016.04.005
  53. Falconer, K. J.. The geometry of fractal sets, volume 85 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1986. Zbl0587.28004MR867284
  54. Fan, X.. The regularity of Lagrangians f ( x , ξ ) = | ξ | α ( x ) with Hölder exponents α ( x ) . Acta Math. Sinica (N.S.), 12(3):254–261, 1996. A Chinese summary appears in Acta Math. Sinica40 (1997), no. 1, 158. Zbl0874.49031MR1457594
  55. Fan, X.. Regularity of nonstandard Lagrangians f ( x , ξ ) . Nonlinear Anal., 27(6):669–678, 1996. Zbl0874.49032MR1399067DOI10.1016/0362-546X(95)00069-8
  56. Fan, X.. p ( x ) -Laplacian equations. In Topological methods, variational methods and their applications (Taiyuan, 2002), pages 117–123. World Sci. Publ., River Edge, NJ, 2003. Zbl1205.35115MR2010647
  57. Fan, X., Wang, S., and Zhao, D.. Density of C ( Ω ) in W 1 , p ( x ) ( Ω ) with discontinuous exponent p ( x ) . Math. Nachr., 279(1-2):142–149, 2006. Zbl1100.46020MR2193613DOI10.1002/mana.200310351
  58. Fan, X. and Zhao, D.. Regularity of minimizers of variational integrals with continuous p ( x ) -growth conditions. Chinese J. Contemp. Math., 17(4):327–336, 1996. MR1432513
  59. Fan, X. and Zhao, D.. Regularity of minimum points of variational integrals with continuous p ( x ) -growth conditions. Chinese Ann. Math. Ser. A, 17(5):557–564, 1996. Zbl0933.49024MR1442353
  60. Ferreira, R., Hästö,, P. and Ribeiro, A. M.. Characterization of generalized Orlicz spaces. arXiv e-prints, arXiv:1612.04566, December 2016. Zbl1454.46033
  61. Fiorenza, A.. A mean continuity type result for certain Sobolev spaces with variable exponent. Commun. Contemp. Math., 4(3):587–605, 2002. Zbl1015.46019MR1918761DOI10.1142/S0219199702000762
  62. Fiorenza, A.. A local estimate for the maximal function in Lebesgue spaces with EXP-type exponents. J. Funct. Spaces, pages 5, Art. ID 581064, 2015. Zbl1327.42021MR3352135DOI10.1155/2015/581064
  63. Fiorenza, A., Kokilashvili,, V. and Meskhi, A.. Hardy-Littlewood maximal operator in weighted grand variable exponent Lebesgue space. Mediterr. J. Math., 14(3), pages 20, Art. 118, 2017. Zbl1375.26014MR3635958DOI10.1007/s00009-017-0921-y
  64. Fiorenza, A. and Krbec, M.. A note on noneffective weights in variable Lebesgue spaces. J. Funct. Spaces Appl., pages 5, Art. ID 853232, 2012. Zbl1239.46023MR2873706DOI10.1155/2012/853232
  65. Fiorenza, A. and Rakotoson, J. M.. Relative rearrangement and Lebesgue spaces L p ( ) with variable exponent. J. Math. Pures Appl. (9), 88(6):506–521, 2007. Zbl1137.46016MR2373739DOI10.1016/j.matpur.2007.09.004
  66. Fiorenza, A., Rakotoson,, J. M. and Sbordone, C.. Variable exponents and grand Lebesgue spaces: some optimal results. Commun. Contemp. Math., 17(6):1550023, 14, 2015. Zbl1351.46024MR3485874DOI10.1142/S0219199715500236
  67. Giannetti, F.. The modular interpolation inequality in Sobolev spaces with variable exponent attaining the value 1. Math. Inequal. Appl., 14(3):509–522, 2011. Zbl1236.46030MR2850167DOI10.7153/mia-14-43
  68. Harjulehto, P. and Hästö, P.. Orlicz spaces and generalized Orlicz spaces. 2018. Zbl1436.46002
  69. Harjulehto, P., Hästö, P., Lê,, Ú. V. and Nuortio, M.. Overview of differential equations with non-standard growth. Nonlinear Anal., 72(12):4551–4574, 2010. Zbl1188.35072MR2639204DOI10.1016/j.na.2010.02.033
  70. Hästö, P.. On the density of continuous functions in variable exponent Sobolev space. Rev. Mat. Iberoam., 23(1):213–234, 2007. Zbl1144.46031MR2351132DOI10.4171/RMI/492
  71. Hästö, P. and Ribeiro, A. M.. Characterization of the variable exponent Sobolev norm without derivatives. Commun. Contemp. Math., 19(3):1650022, 13, 2017. Zbl1408.46035MR3631923DOI10.1142/S021919971650022X
  72. Izuki, M., Nakai,, E. and Sawano, Y.. Function spaces with variable exponents—an introduction—. Sci. Math. Jpn., 77(2):187–315, 2014. Zbl1344.46023MR3330307
  73. Kawohl, B.. Rearrangements and convexity of level sets in PDE, volume 1150 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1985. Zbl0593.35002MR810619DOI10.1007/BFb0075060
  74. Kempka, H. and Vybíral, J.. Lorentz spaces with variable exponents. Math. Nachr., 287(8-9):938–954, 2014. Zbl1309.46012MR3219222DOI10.1002/mana.201200278
  75. Kokilashvili, V. and Krbec, M.. Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific Publishing Co. Inc., River Edge, NJ, 1991. Zbl0751.46021MR1156767DOI10.1142/9789814360302
  76. Kokilashvili, V., Meskhi, A., Rafeiro,, H. and Samko, S.. Integral operators in non-standard function spaces. Vol. 1, volume 248 of Operator Theory: Advances and Applications. Variable exponent Lebesgue and amalgam spaces. Birkhäuser/Springer, [Cham], 2016. Zbl1385.47001MR3559400
  77. Kokilashvili, V., Meskhi, A., Rafeiro,, H. and Samko, S.. Integral operators in non-standard function spaces. Vol. 2, volume 249 of Operator Theory: Advances and Applications. Variable exponent Hölder, Morrey-Campanato and grand spaces. Birkhäuser/Springer, [Cham], 2016. Zbl1367.47004MR3559401DOI10.1007/978-3-319-21018-6_1
  78. Kolmogorov, A. N.. Zur Normierbarkeit eines allgemeinen topologischen linearen Räumes. Studia Math., 5:29–33, 1934. Zbl60.1229.02
  79. Kopaliani, T.. On the Muckenchaupt condition in variable Lebesgue spaces. Proc. A. Razmadze Math. Inst., 148:29–33, 2008. Zbl1179.42017MR2488782
  80. Kopaliani, T. and Chelidze, G.. Gagliardo-Nirenberg type inequality for variable exponent Lebesgue spaces. J. Math. Anal. Appl., 356(1):232–236, 2009. Zbl1169.26006MR2524231DOI10.1016/j.jmaa.2009.03.012
  81. Korenovskii, A.. Mean oscillations and equimeasurable rearrangements of functions, volume 4 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin; UMI, Bologna, 2007. Zbl1133.42035MR2363526DOI10.1007/978-3-540-74709-3
  82. Kostopoulos, T. and Yannakakis, N.. Density of smooth functions in variable exponent Sobolev spaces. Nonlinear Anal., 127:196–205, 2015. Zbl1343.46034MR3392365DOI10.1016/j.na.2015.07.007
  83. Kováčik, O. and Rákosník, J.. On spaces L p ( x ) and W k , p ( x ) . Czechoslovak Math. J., 41(116)(4):592–618, 1991. Zbl0784.46029MR1134951
  84. Krasnosel'skiĭ, M. A. and Rutickiĭ, Ja. B.. Convex Functions and Orlicz Spaces. Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen, 1961. MR126722
  85. Lang, J. and Edmunds, D.. Eigenvalues, embeddings and generalised trigonometric functions, volume 2016 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011. Zbl1220.47001MR2796520DOI10.1007/978-3-642-18429-1
  86. Leoni, G.. A first course in Sobolev spaces, volume 181 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2017. Zbl1382.46001MR3726909DOI10.1090/gsm/181
  87. Lerner, A. K.. On modular inequalities in variable L p spaces. Arch. Math. (Basel), 85(6):538–543, 2005. Zbl1105.42015MR2191663DOI10.1007/s00013-005-1302-5
  88. Lerner, A. K.. On some questions related to the maximal operator on variable L p spaces. Trans. Amer. Math. Soc., 362(8):4229–4242, 2010. Zbl1208.42008MR2608404DOI10.1090/S0002-9947-10-05066-X
  89. Lerner, A. K. and Pérez, C.. A new characterization of the Muckenhoupt A p weights through an extension of the Lorentz-Shimogaki theorem. Indiana Univ. Math. J., 56(6):2697–2722, 2007. Zbl1214.42021MR2375698DOI10.1512/iumj.2007.56.3112
  90. Lieb, E. H. and Loss, M.. Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2001. MR1817225DOI10.1090/gsm/014
  91. Maligranda, L.. Orlicz spaces and interpolation, volume 5 of Seminários de Matemática [Seminars in Mathematics]. Universidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989. Zbl0874.46022MR2264389
  92. Marcellini, P.. Regularity and existence of solutions of elliptic equations with p, q-growth conditions. J. Differential Equations, 90(1):1–30, 1991. Zbl0724.35043MR1094446DOI10.1016/0022-0396(91)90158-6
  93. Marcellini, P.. Regularity for elliptic equations with general growth conditions. J. Differential Equations, 105(2):296–333, 1993. Zbl0812.35042MR1240398DOI10.1006/jdeq.1993.1091
  94. Mercaldo, A., Rossi, J. D., Segura de León, S., and Trombetti, C.. On the behaviour of solutions to the Dirichlet problem for the p ( x ) -Laplacian when p ( x ) goes to 1 in a subdomain. Differential Integral Equations, 25(1-2):53–74, 2012. Zbl1249.35121MR2906546
  95. Meskhi, A.. Measure of non-compactness for integral operators in weighted Lebesgue spaces. Nova Science Publishers, Inc., New York, 2009. Zbl1225.45009MR2799228
  96. Mingione, G.. Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math., 51(4):355–426, 2006. Zbl1164.49324MR2291779DOI10.1007/s10778-006-0110-3
  97. Musielak, J.. Orlicz Spaces and Modular Spaces, volume 1034 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1983. Zbl0557.46020MR724434DOI10.1007/BFb0072210
  98. Nakano, H.. Modulared Semi-Ordered Linear Spaces. Maruzen Co. Ltd., Tokyo, 1950. Zbl0041.23401MR38565
  99. Nakano, H.. Topology and Linear Topological Spaces. Maruzen Co. Ltd., Tokyo, 1951. MR46560
  100. Nekvinda, A.. Hardy-Littlewood maximal operator on L p ( x ) ( n ) . Math. Inequal. Appl., 7(2):255–265, 2004. Zbl1059.42016MR2057644DOI10.7153/mia-07-28
  101. Nekvinda, A.. Maximal operator on variable Lebesgue spaces for almost monotone radial exponent. J. Math. Anal. Appl., 337(2):1345–1365, 2008. Zbl1260.42010MR2386383DOI10.1016/j.jmaa.2007.04.047
  102. Okikiolu, G. O.. Aspects of the Theory of Bounded Integral Operators in L p −Spaces. Academic Press, London - New York, 1971. Zbl0219.44002MR445237
  103. Orlicz, W.. Über konjugierte Exponentenfolgen. Stud. Math., 3:200–211, 1931. Zbl57.0251.02
  104. Pick, L., Kufner, A., John,, O. and Fučík, S.. Function spaces. Vol. 1, volume 14 of De Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, extended edition, 2013. Zbl1275.46002MR3024912
  105. Pick, L. and Růžička, M.. An example of a space L p ( x ) on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math., 19(4):369–371, 2001. Zbl1003.42013MR1876258DOI10.1016/S0723-0869(01)80023-2
  106. Rădulescu, V. D. and Repovš, D. D.. Partial differential equations with variable exponents. Variational methods and qualitative analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015. MR3379920DOI10.1201/b18601
  107. Rakotoson, J. M.. Réarrangement Relatif, volume 64 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin, 2008. MR2455723DOI10.1007/978-3-540-69118-1
  108. Rao, M. M. and Ren, Z. D.. Theory of Orlicz spaces, volume 146 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1991. Zbl0724.46032MR1113700
  109. Ross, B. and Samko, S.. Fractional integration operator of variable order in the Hölder spaces H λ ( x ) . Internat. J. Math. Math. Sci., 18(4):777–788, 1995. Zbl0838.26005MR1347069DOI10.1155/S0161171295001001
  110. Rudin, W.. Real and Complex Analysis. McGraw-Hill Book Co., New York, third edition, 1987. Zbl0925.00005MR924157
  111. Růžička, M.. Electrorheological fluids: modeling and mathematical theory, volume 1748 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000. Zbl0962.76001MR1810360DOI10.1007/BFb0104029
  112. Růžička, M.. Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math., 49(6):565–609, 2004. Zbl1099.35103MR2099981DOI10.1007/s10492-004-6432-8
  113. Samko, S.. Fractional integration and differentiation of variable order. Anal. Math., 21(3):213–236, 1995. Zbl0838.26006MR1349652DOI10.1007/BF01911126
  114. Samko, S.. Convolution and potential type operators in L p ( x ) ( n ) . Integral Transform. Spec. Funct., 7(3-4):261–284, 1998. Zbl1023.31009MR1775832DOI10.1080/10652469808819204
  115. Samko, S.. Convolution type operators in L p ( x ) . Integral Transform. Spec. Funct., 7(1- 2):123–144, 1998. Zbl0934.46032MR1658190DOI10.1080/10652469808819191
  116. Samko, S.. Differentiation and integration of variable order and the spaces L p ( x ) . In Operator theory for complex and hypercomplex analysis (Mexico City, 1994), volume 212 of Contemp. Math., pages 203–219. Amer. Math. Soc., Providence, RI, 1998. Zbl0958.26005MR1486602DOI10.1090/conm/212/02884
  117. Samko, S.. Denseness of C 0 ( N in the generalized Sobolev spaces W M , P ( X ) ( N ) . In Direct and inverse problems in mathematical physics (Newark, DE, 1997), volume 5 of Int. Soc. Anal. Appl. Comput., pages 333–342. Kluwer Acad. Publ., Dordrecht, 2000. MR1766309DOI10.1007/978-1-4757-3214-6_20
  118. Samko, S. and Ross, B.. Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct., 1(4):277–300, 1993. Zbl0820.26003MR1421643DOI10.1080/10652469308819027
  119. Sharapudinov, I. I.. The topology of the space p ( t ) ( [ 0 , 1 ] ) . Mat. Zametki, 26(4):613–632, 655, 1979. MR552723
  120. Sharapudinov, I. I.. The basis property of the Haar system in the space p ( t ) ( [ 0 , 1 ] ) and the principle of localization in the mean. Mat. Sb. (N.S.), 130(172)(2):275–283, 286, 1986. MR854976DOI10.1070/SM1987v058n01ABEH003104
  121. Stein, E. M.. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970. Zbl0207.13501MR290095
  122. Stein, E. M.. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. Zbl0821.42001MR1232192
  123. Tsenov, I. V.. Generalization of the problem of best approximation of a function in the space L s . Uch. Zap. Dagestan. Gos. Univ., 7:25–37, 1961. 
  124. Zhikov, V. V.. Problems of convergence, duality, and averaging for a class of functionals of the calculus of variations. Dokl. Akad. Nauk SSSR, 267(3):524–528, 1982. MR681795
  125. Zhikov, V. V.. Meyer-type estimates for solving the nonlinear Stokes system. Differ. Uravn., 33(1):107–114, 143, 1997. MR1607245
  126. Zhikov, V. V.. On some variational problems. Russian J. Math. Phys., 5(1):105–116 (1998), 1997. Zbl0917.49006MR1486765
  127. Zhikov, V. V.. On the density of smooth functions in Sobolev-Orlicz spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310(Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34]):67–81, 226, 2004. Zbl1086.46026MR2120185DOI10.1007/s10958-005-0497-0
  128. Ziemer, W. P.. Weakly Differentiable Functions, volume 120 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989. Zbl0692.46022MR1014685DOI10.1007/978-1-4612-1015-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.