Categories of results in variable Lebesgue spaces theory
Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche (2019)
- Volume: 86, Issue: 1, page 79-102
- ISSN: 0370-3568
Access Full Article
topAbstract
topHow to cite
topFiorenza, Alberto. "Categories of results in variable Lebesgue spaces theory." Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche 86.1 (2019): 79-102. <http://eudml.org/doc/296414>.
@article{Fiorenza2019,
abstract = {Variable (exponent) Lebesgue spaces represent a relevant research area within the theory of Banach function spaces. Much attention is devoted to look for sufficient conditions on the variable exponent to establish the assertions within the theory. In this Note we try to show the beauty of the research in this field, mainly quoting some known results organized into “categories", each of them characterized by a common typology of conditions on the variable exponent. New results involve the failure of rearrangement-invariant property, the rearrangement of the exponent, and a generalization of a formula known for constant exponents. Riassunto – Gli spazi di Lebesgue con esponente variabile rappresentano un set},
author = {Fiorenza, Alberto},
journal = {Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche},
keywords = {Classical Lebesgue spaces; variable exponents; measurable functions},
language = {eng},
month = {12},
number = {1},
pages = {79-102},
publisher = {Società Nazione di Scienze, Lettere e Arti in Napoli; Giannini},
title = {Categories of results in variable Lebesgue spaces theory},
url = {http://eudml.org/doc/296414},
volume = {86},
year = {2019},
}
TY - JOUR
AU - Fiorenza, Alberto
TI - Categories of results in variable Lebesgue spaces theory
JO - Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche
DA - 2019/12//
PB - Società Nazione di Scienze, Lettere e Arti in Napoli; Giannini
VL - 86
IS - 1
SP - 79
EP - 102
AB - Variable (exponent) Lebesgue spaces represent a relevant research area within the theory of Banach function spaces. Much attention is devoted to look for sufficient conditions on the variable exponent to establish the assertions within the theory. In this Note we try to show the beauty of the research in this field, mainly quoting some known results organized into “categories", each of them characterized by a common typology of conditions on the variable exponent. New results involve the failure of rearrangement-invariant property, the rearrangement of the exponent, and a generalization of a formula known for constant exponents. Riassunto – Gli spazi di Lebesgue con esponente variabile rappresentano un set
LA - eng
KW - Classical Lebesgue spaces; variable exponents; measurable functions
UR - http://eudml.org/doc/296414
ER -
References
top- Acerbi, E. and Mingione, G.. Regularity results for electrorheological fluids: the stationary case. C. R. Math. Acad. Sci. Paris, 334(9):817–822, 2002. Zbl1017.76098MR1905047DOI10.1016/S1631-073X(02)02337-3
- Acerbi, E. and Mingione, G.. Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal., 164(3):213–259, 2002. Zbl1038.76058MR1930392DOI10.1007/s00205-002-0208-7
- Acerbi, E. and Mingione, G.. Gradient estimates for the -Laplacean system. J. Reine Angew. Math., 584:117–148, 2005. Zbl1093.76003MR2155087DOI10.1515/crll.2005.2005.584.117
- Ahmida, Y., Chlebicka, I., Gwiazda, P., and Youssfi, A.. Gossez’s approximation theorems in Musielak-Orlicz-Sobolev spaces. J. Funct. Anal., 275(9):2538–2571, 2018. Zbl1405.42042MR3847479DOI10.1016/j.jfa.2018.05.015
- Almeida, A., Diening, L., and Hästö, P.. Homogeneous variable exponent Besov and Triebel- Lizorkin spaces. Math. Nachr., 291(8-9):1177–1190, 2018. Zbl1397.42010MR3817312DOI10.1002/mana.201700076
- Amaziane, B., Pankratov, L., and Piatnitski, A.. Nonlinear flow through double porosity media in variable exponent Sobolev spaces. Nonlinear Anal. Real World Appl., 10(4):2521–2530, 2009. Zbl1163.35410MR2508463DOI10.1016/j.nonrwa.2008.05.008
- Ambrosio, L., Fusco, N., and Pallara, D.. Functions of bounded variation and free discontinu- ity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. Zbl0957.49001MR1857292
- Anatriello, G., Chill, R., and Fiorenza, A.. Identification of fully measurable grand Lebesgue spaces. J. Funct. Spaces, pages 3, Art. ID 3129186, 2017. Zbl1386.46029MR3713073DOI10.1155/2017/3129186
- Anatriello, G., Fiorenza, A., and Vincenzi, G.. Banach function norms via Cauchy polynomials and applications. Internat. J. Math., 26(10), pages 20, 1550083, 2015. Zbl1345.46003MR3401968DOI10.1142/S0129167X15500834
- Antontsev, S. N. and Shmarev, S. I.. Evolution PDEs with nonstandard growth conditions, volume 4 of Atlantis Studies in Differential Equations. Existence, uniqueness, localization, blow-up. Atlantis Press, Paris, 2015. Zbl1410.35001MR3328376DOI10.2991/978-94-6239-112-3
- Antontsev, S. N. and Shmarev, S. I.. A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal., 60(3):515–545, 2005. Zbl1066.35045MR2103951DOI10.1016/j.na.2004.09.026
- Baroni, P., Colombo, M., and Mingione, G.. Nonautonomous functionals, borderline cases and related function classes. Algebra i Analiz, 27(3):6–50, 2015. Zbl1335.49057MR3570955DOI10.1090/spmj/1392
- Baroni, P., Colombo, M., and Mingione, G.. Harnack inequalities for double phase functionals. Nonlinear Anal., 121:206–222, 2015. Zbl1321.49059MR3348922DOI10.1016/j.na.2014.11.001
- Baruah, D., Harjulehto, P., and Hästö, P.. Capacities in generalized Orlicz spaces. J. Funct. Spaces, pages 10, Art. ID 8459874, 2018. Zbl1409.46024MR3864628DOI10.1155/2018/8459874
- Bennett, C. and Sharpley, R.. Interpolation of Operators, volume 129 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1988. Zbl0647.46057MR928802
- Birnbaum, Z. W. and Orlicz, W.. Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Stud. Math., 3:1–67, 1931. Zbl0003.25202
- Blomgren, P., Chan, T., Mulet, P., and Wong, C. K.. Total variation image restoration: numerical methods and extensions. In Proceedings of the 1997 IEEE International Conference on Image Processing, volume III, pages 384–387, 1997. MR1661966
- Brezis, H.. Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris, 1983. Théorie et applications.[Theory and applications]. MR697382
- Brezis, H.. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011. Zbl1220.46002MR2759829
- Capone, C., Cruz-Uribe, D., and Fiorenza, A.. The fractional maximal operator and fractional integrals on variable spaces. Rev. Mat. Iberoam., 23(3):743–770, 2007. Zbl1213.42063MR2414490DOI10.4171/RMI/511
- Castillo, R. E. and Rafeiro, H.. An introductory course in Lebesgue spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, [Cham], 2016. Zbl1352.46003MR3497415DOI10.1007/978-3-319-30034-4
- Çekiç, B., Kalinin, A. V., Mashiyev, R. A., and Avci, M.. -estimates for vector fields and some applications to magnetostatics problems. J. Math. Anal. Appl., 389(2):838–851, 2012. Zbl1234.35192MR2879262DOI10.1016/j.jmaa.2011.12.029
- Colombo, M. and Mingione, G.. Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal., 218(1):219–273, 2015. Zbl1325.49042MR3360738DOI10.1007/s00205-015-0859-9
- Cruz-Uribe, D., Diening, L., and Fiorenza, A.. A new proof of the boundedness of maximal operators on variable Lebesgue spaces. Boll. Unione Mat. Ital. (9), 2(1):151–173, 2009. Zbl1207.42011MR2493649
- Cruz-Uribe, D., Di Fratta, G., and Fiorenza, A.. Modular inequalities for the maximal operator in variable Lebesgue spaces. Nonlinear Anal., 177(part A):299–311, 2018. Zbl1412.42047MR3865200DOI10.1016/j.na.2018.01.007
- Cruz-Uribe, D. and Fiorenza, A.. Approximate identities in variable spaces. Math. Nachr., 280(3):256–270, 2007. Zbl1178.42022MR2292148DOI10.1002/mana.200410479
- Cruz-Uribe, D. V. and Fiorenza, A.. Variable Lebesgue spaces. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Heidelberg, 2013. Foundations and harmonic analysis. Zbl1268.46002MR3026953DOI10.1007/978-3-0348-0548-3
- Cruz-Uribe, D., Fiorenza, A., Martell,, J. M. and Pérez, C.. The boundedness of classical operators on variable spaces. Ann. Acad. Sci. Fenn. Math., 31(1):239–264, 2006. Zbl1100.42012MR2210118
- Cruz-Uribe, D., Fiorenza,, A. and Neugebauer, C. J.. The maximal function on variable spaces. Ann. Acad. Sci. Fenn. Math., 28(1):223–238, 2003. See also errata [30]. Zbl1037.42023MR1976842
- Cruz-Urib, D.e, Fiorenza,, A. and Neugebauer, C. J.. Corrections to: “The maximal function on variable spaces” [Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223–238; ]. Ann. Acad. Sci. Fenn. Math., 29(1):247–249, 2004. Zbl1064.42500MR2041952
- Cruz-Uribe, D. V., Fiorenza, A., Ruzhansky,, M. and Wirth, J.. Lebesgu, Variablee spaces and hyperbolic systems. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser/Springer, Basel, 2014. Selected lecture notes from the Advanced Courses on Approximation Theory and Fourier Analysis held at the Centre de Recerca Matemàtica, Barcelona, November 7–11, 2011, Edited by Sergey Tikhonov. MR3364250
- Cruz-Uribe, D. and Hästö, P.. Extrapolation and interpolation in generalized Orlicz spaces. Trans. Amer. Math. Soc., 370(6):4323–4349, 2018. Zbl1391.46037MR3811530DOI10.1090/tran/7155
- Cruz-Uribe, D., Martell,, J. M. and Pérez, C.. Weights, extrapolation and the theory of Rubio de Francia, volume 215 of Operator Theory: Advances and Applications. Birkhäuser/Springer, [Cham], 2011. Zbl1234.46003MR2797562DOI10.1007/978-3-0348-0072-3
- D’Aristotile, A. M. and Fiorenza, A.. A topology on inequalities. Electron. J. Differential Equations, pages 22, No. 85, 2006. Zbl1124.46020MR2240833
- DiBenedetto, E.. Real analysis. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Boston, Inc., Boston, MA, 2002. MR1897317DOI10.1007/978-1-4612-0117-5
- Diening, L.. Maximal function on generalized Lebesgue spaces . Math. Inequal. Appl., 7(2):245–253, 2004. Zbl1071.42014MR2057643DOI10.7153/mia-07-27
- Diening, L.. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math., 129(8):657–700, 2005. Zbl1096.46013MR2166733DOI10.1016/j.bulsci.2003.10.003
- Diening, L.. Lebesgue and Sobolev Spaces with Variable Exponent. Habilitation, Universität Freiburg, 2007.
- Diening, L., Harjulehto, P., Hästö,, P. and Růžička, M.. Lebesgue and Sobolev spaces with variable exponents, volume 2017 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011. Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
- Diening, L. and Růžička, M.. Calderón-Zygmund operators on generalized Lebesgue spaces and problems related to fluid dynamics. J. Reine Angew. Math., 563:197–220, 2003. Zbl1072.76071MR2009242DOI10.1515/crll.2003.081
- Diening, L. and Růžička, M.. Integral operators on the halfspace in generalized Lebesgue spaces . I. J. Math. Anal. Appl., 298(2):559–571, 2004. Zbl1128.47044MR2086975DOI10.1016/j.jmaa.2004.05.048
- Diening, L. and Růžička, M.. Integral operators on the halfspace in generalized Lebesgue spaces . II. J. Math. Anal. Appl., 298(2):572–588, 2004. Zbl1128.47044MR2086976DOI10.1016/j.jmaa.2004.05.049
- Diening, L. and Růžička, M.. Non-Newtonian fluids and function spaces. In NAFSA 8— Nonlinear analysis, function spaces and applications. Vol. 8, pages 94–143. Czech. Acad. Sci., Prague, 2007. Zbl1289.35104MR2657118
- Diening, L., Harjulehto, P., Hästö, P., Mizuta,, Y. and Shimomura, T.. Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math., 34(2):503–522, 2009. Zbl1180.42010MR2553809
- Duoandikoetxea, J.. Fourier Analysis, volume 29 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. Translated and revised from the 1995 Spanish original by David Cruz-Uribe. Zbl0969.42001MR1800316DOI10.1090/gsm/029
- Edmunds, D. E., Lang,, J. and Méndez, O.. Differential operators on spaces of variable integrability. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014. Zbl1336.46003MR3308513DOI10.1142/9124
- Edmunds, D. E., Lang,, J. and Nekvinda, A.. On norms. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455(1981):219–225, 1999. Zbl0953.46018MR1700499DOI10.1098/rspa.1999.0309
- Edmunds, D. E. and Meskhi, A.. Potential-type operators in spaces. Z. Anal. Anwendungen, 21(3):681–690, 2002. Zbl1031.46033MR1929426DOI10.4171/ZAA/1102
- Edmunds, D. E. and Rákosník, J.. Density of smooth functions in . Proc. Roy. Soc. London Ser. A, 437(1899):229–236, 1992. Zbl0779.46027MR1177754DOI10.1098/rspa.1992.0059
- El Hamidi, A.. Existence results to elliptic systems with nonstandard growth conditions. J. Math. Anal. Appl., 300(1):30–42, 2004. Zbl1148.35316MR2100236DOI10.1016/j.jmaa.2004.05.041
- Hästö, P.. The maximal operator on generalized Orlicz spaces. J. Funct. Anal., 269(12):4038–4048, 2015. See also corrigendum [52]. Zbl1338.47032MR3418078DOI10.1016/j.jfa.2015.10.002
- Hästö, P.. Corrigendum to “The maximal operator on generalized Orlicz spaces" [J. Funct. Anal. 269 (2015) 4038–4048]. J. Funct. Anal., 271(1):240–243, 2016. Zbl06579053MR3494250DOI10.1016/j.jfa.2016.04.005
- Falconer, K. J.. The geometry of fractal sets, volume 85 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1986. Zbl0587.28004MR867284
- Fan, X.. The regularity of Lagrangians with Hölder exponents . Acta Math. Sinica (N.S.), 12(3):254–261, 1996. A Chinese summary appears in Acta Math. Sinica40 (1997), no. 1, 158. Zbl0874.49031MR1457594
- Fan, X.. Regularity of nonstandard Lagrangians . Nonlinear Anal., 27(6):669–678, 1996. Zbl0874.49032MR1399067DOI10.1016/0362-546X(95)00069-8
- Fan, X.. -Laplacian equations. In Topological methods, variational methods and their applications (Taiyuan, 2002), pages 117–123. World Sci. Publ., River Edge, NJ, 2003. Zbl1205.35115MR2010647
- Fan, X., Wang, S., and Zhao, D.. Density of in with discontinuous exponent . Math. Nachr., 279(1-2):142–149, 2006. Zbl1100.46020MR2193613DOI10.1002/mana.200310351
- Fan, X. and Zhao, D.. Regularity of minimizers of variational integrals with continuous -growth conditions. Chinese J. Contemp. Math., 17(4):327–336, 1996. MR1432513
- Fan, X. and Zhao, D.. Regularity of minimum points of variational integrals with continuous -growth conditions. Chinese Ann. Math. Ser. A, 17(5):557–564, 1996. Zbl0933.49024MR1442353
- Ferreira, R., Hästö,, P. and Ribeiro, A. M.. Characterization of generalized Orlicz spaces. arXiv e-prints, arXiv:1612.04566, December 2016. Zbl1454.46033
- Fiorenza, A.. A mean continuity type result for certain Sobolev spaces with variable exponent. Commun. Contemp. Math., 4(3):587–605, 2002. Zbl1015.46019MR1918761DOI10.1142/S0219199702000762
- Fiorenza, A.. A local estimate for the maximal function in Lebesgue spaces with EXP-type exponents. J. Funct. Spaces, pages 5, Art. ID 581064, 2015. Zbl1327.42021MR3352135DOI10.1155/2015/581064
- Fiorenza, A., Kokilashvili,, V. and Meskhi, A.. Hardy-Littlewood maximal operator in weighted grand variable exponent Lebesgue space. Mediterr. J. Math., 14(3), pages 20, Art. 118, 2017. Zbl1375.26014MR3635958DOI10.1007/s00009-017-0921-y
- Fiorenza, A. and Krbec, M.. A note on noneffective weights in variable Lebesgue spaces. J. Funct. Spaces Appl., pages 5, Art. ID 853232, 2012. Zbl1239.46023MR2873706DOI10.1155/2012/853232
- Fiorenza, A. and Rakotoson, J. M.. Relative rearrangement and Lebesgue spaces with variable exponent. J. Math. Pures Appl. (9), 88(6):506–521, 2007. Zbl1137.46016MR2373739DOI10.1016/j.matpur.2007.09.004
- Fiorenza, A., Rakotoson,, J. M. and Sbordone, C.. Variable exponents and grand Lebesgue spaces: some optimal results. Commun. Contemp. Math., 17(6):1550023, 14, 2015. Zbl1351.46024MR3485874DOI10.1142/S0219199715500236
- Giannetti, F.. The modular interpolation inequality in Sobolev spaces with variable exponent attaining the value 1. Math. Inequal. Appl., 14(3):509–522, 2011. Zbl1236.46030MR2850167DOI10.7153/mia-14-43
- Harjulehto, P. and Hästö, P.. Orlicz spaces and generalized Orlicz spaces. 2018. Zbl1436.46002
- Harjulehto, P., Hästö, P., Lê,, Ú. V. and Nuortio, M.. Overview of differential equations with non-standard growth. Nonlinear Anal., 72(12):4551–4574, 2010. Zbl1188.35072MR2639204DOI10.1016/j.na.2010.02.033
- Hästö, P.. On the density of continuous functions in variable exponent Sobolev space. Rev. Mat. Iberoam., 23(1):213–234, 2007. Zbl1144.46031MR2351132DOI10.4171/RMI/492
- Hästö, P. and Ribeiro, A. M.. Characterization of the variable exponent Sobolev norm without derivatives. Commun. Contemp. Math., 19(3):1650022, 13, 2017. Zbl1408.46035MR3631923DOI10.1142/S021919971650022X
- Izuki, M., Nakai,, E. and Sawano, Y.. Function spaces with variable exponents—an introduction—. Sci. Math. Jpn., 77(2):187–315, 2014. Zbl1344.46023MR3330307
- Kawohl, B.. Rearrangements and convexity of level sets in PDE, volume 1150 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1985. Zbl0593.35002MR810619DOI10.1007/BFb0075060
- Kempka, H. and Vybíral, J.. Lorentz spaces with variable exponents. Math. Nachr., 287(8-9):938–954, 2014. Zbl1309.46012MR3219222DOI10.1002/mana.201200278
- Kokilashvili, V. and Krbec, M.. Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific Publishing Co. Inc., River Edge, NJ, 1991. Zbl0751.46021MR1156767DOI10.1142/9789814360302
- Kokilashvili, V., Meskhi, A., Rafeiro,, H. and Samko, S.. Integral operators in non-standard function spaces. Vol. 1, volume 248 of Operator Theory: Advances and Applications. Variable exponent Lebesgue and amalgam spaces. Birkhäuser/Springer, [Cham], 2016. Zbl1385.47001MR3559400
- Kokilashvili, V., Meskhi, A., Rafeiro,, H. and Samko, S.. Integral operators in non-standard function spaces. Vol. 2, volume 249 of Operator Theory: Advances and Applications. Variable exponent Hölder, Morrey-Campanato and grand spaces. Birkhäuser/Springer, [Cham], 2016. Zbl1367.47004MR3559401DOI10.1007/978-3-319-21018-6_1
- Kolmogorov, A. N.. Zur Normierbarkeit eines allgemeinen topologischen linearen Räumes. Studia Math., 5:29–33, 1934. Zbl60.1229.02
- Kopaliani, T.. On the Muckenchaupt condition in variable Lebesgue spaces. Proc. A. Razmadze Math. Inst., 148:29–33, 2008. Zbl1179.42017MR2488782
- Kopaliani, T. and Chelidze, G.. Gagliardo-Nirenberg type inequality for variable exponent Lebesgue spaces. J. Math. Anal. Appl., 356(1):232–236, 2009. Zbl1169.26006MR2524231DOI10.1016/j.jmaa.2009.03.012
- Korenovskii, A.. Mean oscillations and equimeasurable rearrangements of functions, volume 4 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin; UMI, Bologna, 2007. Zbl1133.42035MR2363526DOI10.1007/978-3-540-74709-3
- Kostopoulos, T. and Yannakakis, N.. Density of smooth functions in variable exponent Sobolev spaces. Nonlinear Anal., 127:196–205, 2015. Zbl1343.46034MR3392365DOI10.1016/j.na.2015.07.007
- Kováčik, O. and Rákosník, J.. On spaces and . Czechoslovak Math. J., 41(116)(4):592–618, 1991. Zbl0784.46029MR1134951
- Krasnosel'skiĭ, M. A. and Rutickiĭ, Ja. B.. Convex Functions and Orlicz Spaces. Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen, 1961. MR126722
- Lang, J. and Edmunds, D.. Eigenvalues, embeddings and generalised trigonometric functions, volume 2016 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011. Zbl1220.47001MR2796520DOI10.1007/978-3-642-18429-1
- Leoni, G.. A first course in Sobolev spaces, volume 181 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2017. Zbl1382.46001MR3726909DOI10.1090/gsm/181
- Lerner, A. K.. On modular inequalities in variable spaces. Arch. Math. (Basel), 85(6):538–543, 2005. Zbl1105.42015MR2191663DOI10.1007/s00013-005-1302-5
- Lerner, A. K.. On some questions related to the maximal operator on variable spaces. Trans. Amer. Math. Soc., 362(8):4229–4242, 2010. Zbl1208.42008MR2608404DOI10.1090/S0002-9947-10-05066-X
- Lerner, A. K. and Pérez, C.. A new characterization of the Muckenhoupt weights through an extension of the Lorentz-Shimogaki theorem. Indiana Univ. Math. J., 56(6):2697–2722, 2007. Zbl1214.42021MR2375698DOI10.1512/iumj.2007.56.3112
- Lieb, E. H. and Loss, M.. Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2001. MR1817225DOI10.1090/gsm/014
- Maligranda, L.. Orlicz spaces and interpolation, volume 5 of Seminários de Matemática [Seminars in Mathematics]. Universidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989. Zbl0874.46022MR2264389
- Marcellini, P.. Regularity and existence of solutions of elliptic equations with p, q-growth conditions. J. Differential Equations, 90(1):1–30, 1991. Zbl0724.35043MR1094446DOI10.1016/0022-0396(91)90158-6
- Marcellini, P.. Regularity for elliptic equations with general growth conditions. J. Differential Equations, 105(2):296–333, 1993. Zbl0812.35042MR1240398DOI10.1006/jdeq.1993.1091
- Mercaldo, A., Rossi, J. D., Segura de León, S., and Trombetti, C.. On the behaviour of solutions to the Dirichlet problem for the -Laplacian when goes to 1 in a subdomain. Differential Integral Equations, 25(1-2):53–74, 2012. Zbl1249.35121MR2906546
- Meskhi, A.. Measure of non-compactness for integral operators in weighted Lebesgue spaces. Nova Science Publishers, Inc., New York, 2009. Zbl1225.45009MR2799228
- Mingione, G.. Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math., 51(4):355–426, 2006. Zbl1164.49324MR2291779DOI10.1007/s10778-006-0110-3
- Musielak, J.. Orlicz Spaces and Modular Spaces, volume 1034 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1983. Zbl0557.46020MR724434DOI10.1007/BFb0072210
- Nakano, H.. Modulared Semi-Ordered Linear Spaces. Maruzen Co. Ltd., Tokyo, 1950. Zbl0041.23401MR38565
- Nakano, H.. Topology and Linear Topological Spaces. Maruzen Co. Ltd., Tokyo, 1951. MR46560
- Nekvinda, A.. Hardy-Littlewood maximal operator on . Math. Inequal. Appl., 7(2):255–265, 2004. Zbl1059.42016MR2057644DOI10.7153/mia-07-28
- Nekvinda, A.. Maximal operator on variable Lebesgue spaces for almost monotone radial exponent. J. Math. Anal. Appl., 337(2):1345–1365, 2008. Zbl1260.42010MR2386383DOI10.1016/j.jmaa.2007.04.047
- Okikiolu, G. O.. Aspects of the Theory of Bounded Integral Operators in −Spaces. Academic Press, London - New York, 1971. Zbl0219.44002MR445237
- Orlicz, W.. Über konjugierte Exponentenfolgen. Stud. Math., 3:200–211, 1931. Zbl57.0251.02
- Pick, L., Kufner, A., John,, O. and Fučík, S.. Function spaces. Vol. 1, volume 14 of De Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, extended edition, 2013. Zbl1275.46002MR3024912
- Pick, L. and Růžička, M.. An example of a space on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math., 19(4):369–371, 2001. Zbl1003.42013MR1876258DOI10.1016/S0723-0869(01)80023-2
- Rădulescu, V. D. and Repovš, D. D.. Partial differential equations with variable exponents. Variational methods and qualitative analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015. MR3379920DOI10.1201/b18601
- Rakotoson, J. M.. Réarrangement Relatif, volume 64 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin, 2008. MR2455723DOI10.1007/978-3-540-69118-1
- Rao, M. M. and Ren, Z. D.. Theory of Orlicz spaces, volume 146 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1991. Zbl0724.46032MR1113700
- Ross, B. and Samko, S.. Fractional integration operator of variable order in the Hölder spaces . Internat. J. Math. Math. Sci., 18(4):777–788, 1995. Zbl0838.26005MR1347069DOI10.1155/S0161171295001001
- Rudin, W.. Real and Complex Analysis. McGraw-Hill Book Co., New York, third edition, 1987. Zbl0925.00005MR924157
- Růžička, M.. Electrorheological fluids: modeling and mathematical theory, volume 1748 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000. Zbl0962.76001MR1810360DOI10.1007/BFb0104029
- Růžička, M.. Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math., 49(6):565–609, 2004. Zbl1099.35103MR2099981DOI10.1007/s10492-004-6432-8
- Samko, S.. Fractional integration and differentiation of variable order. Anal. Math., 21(3):213–236, 1995. Zbl0838.26006MR1349652DOI10.1007/BF01911126
- Samko, S.. Convolution and potential type operators in . Integral Transform. Spec. Funct., 7(3-4):261–284, 1998. Zbl1023.31009MR1775832DOI10.1080/10652469808819204
- Samko, S.. Convolution type operators in . Integral Transform. Spec. Funct., 7(1- 2):123–144, 1998. Zbl0934.46032MR1658190DOI10.1080/10652469808819191
- Samko, S.. Differentiation and integration of variable order and the spaces . In Operator theory for complex and hypercomplex analysis (Mexico City, 1994), volume 212 of Contemp. Math., pages 203–219. Amer. Math. Soc., Providence, RI, 1998. Zbl0958.26005MR1486602DOI10.1090/conm/212/02884
- Samko, S.. Denseness of in the generalized Sobolev spaces . In Direct and inverse problems in mathematical physics (Newark, DE, 1997), volume 5 of Int. Soc. Anal. Appl. Comput., pages 333–342. Kluwer Acad. Publ., Dordrecht, 2000. MR1766309DOI10.1007/978-1-4757-3214-6_20
- Samko, S. and Ross, B.. Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct., 1(4):277–300, 1993. Zbl0820.26003MR1421643DOI10.1080/10652469308819027
- Sharapudinov, I. I.. The topology of the space . Mat. Zametki, 26(4):613–632, 655, 1979. MR552723
- Sharapudinov, I. I.. The basis property of the Haar system in the space and the principle of localization in the mean. Mat. Sb. (N.S.), 130(172)(2):275–283, 286, 1986. MR854976DOI10.1070/SM1987v058n01ABEH003104
- Stein, E. M.. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970. Zbl0207.13501MR290095
- Stein, E. M.. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. Zbl0821.42001MR1232192
- Tsenov, I. V.. Generalization of the problem of best approximation of a function in the space . Uch. Zap. Dagestan. Gos. Univ., 7:25–37, 1961.
- Zhikov, V. V.. Problems of convergence, duality, and averaging for a class of functionals of the calculus of variations. Dokl. Akad. Nauk SSSR, 267(3):524–528, 1982. MR681795
- Zhikov, V. V.. Meyer-type estimates for solving the nonlinear Stokes system. Differ. Uravn., 33(1):107–114, 143, 1997. MR1607245
- Zhikov, V. V.. On some variational problems. Russian J. Math. Phys., 5(1):105–116 (1998), 1997. Zbl0917.49006MR1486765
- Zhikov, V. V.. On the density of smooth functions in Sobolev-Orlicz spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310(Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34]):67–81, 226, 2004. Zbl1086.46026MR2120185DOI10.1007/s10958-005-0497-0
- Ziemer, W. P.. Weakly Differentiable Functions, volume 120 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989. Zbl0692.46022MR1014685DOI10.1007/978-1-4612-1015-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.