Modeling, mathematical and numerical analysis of electrorheological fluids

Michael Růžička

Applications of Mathematics (2004)

  • Volume: 49, Issue: 6, page 565-609
  • ISSN: 0862-7940

Abstract

top
Many electrorheological fluids are suspensions consisting of solid particles and a carrier oil. If such a suspension is exposed to a strong electric field the effective viscosity increases dramatically. In this paper we first derive a model which captures this behaviour. For the resulting system of equations we then prove local in time existence of strong solutions for large data. For these solutions we finally derive error estimates for a fully implicit time-discretization.

How to cite

top

Růžička, Michael. "Modeling, mathematical and numerical analysis of electrorheological fluids." Applications of Mathematics 49.6 (2004): 565-609. <http://eudml.org/doc/33201>.

@article{Růžička2004,
abstract = {Many electrorheological fluids are suspensions consisting of solid particles and a carrier oil. If such a suspension is exposed to a strong electric field the effective viscosity increases dramatically. In this paper we first derive a model which captures this behaviour. For the resulting system of equations we then prove local in time existence of strong solutions for large data. For these solutions we finally derive error estimates for a fully implicit time-discretization.},
author = {Růžička, Michael},
journal = {Applications of Mathematics},
keywords = {Maxwell's equations; electrorheological fluids; constitutive relations; Galerkin approximation; Maxwell equations; electrorheological fluids; constitutive relations; Galerkin approximation},
language = {eng},
number = {6},
pages = {565-609},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Modeling, mathematical and numerical analysis of electrorheological fluids},
url = {http://eudml.org/doc/33201},
volume = {49},
year = {2004},
}

TY - JOUR
AU - Růžička, Michael
TI - Modeling, mathematical and numerical analysis of electrorheological fluids
JO - Applications of Mathematics
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 6
SP - 565
EP - 609
AB - Many electrorheological fluids are suspensions consisting of solid particles and a carrier oil. If such a suspension is exposed to a strong electric field the effective viscosity increases dramatically. In this paper we first derive a model which captures this behaviour. For the resulting system of equations we then prove local in time existence of strong solutions for large data. For these solutions we finally derive error estimates for a fully implicit time-discretization.
LA - eng
KW - Maxwell's equations; electrorheological fluids; constitutive relations; Galerkin approximation; Maxwell equations; electrorheological fluids; constitutive relations; Galerkin approximation
UR - http://eudml.org/doc/33201
ER -

References

top
  1. Effects of nonuniform electric field on slit flow of an electrorheological fluid, J. Rheol. 39 (1995), 1327–1341. (1995) 
  2. Effects of electrode morphology on the slit flow of an electrorheological fluid, J. Non-Newtonian Fluid Mech. 63 (1966), 45–61. (1966) 
  3. 10.1016/S0255-2701(97)00002-0, Chem. Eng. and Proc. 36 (1997), 281–289. (1997) DOI10.1016/S0255-2701(97)00002-0
  4. 10.1051/m2an/1998320708431, RAIRO Modél. Math. Anal. Numér. 32 (1998), 843–858. (1998) MR1654432DOI10.1051/m2an/1998320708431
  5. 10.1016/0045-7825(93)90082-9, Comput. Methods Appl. Mech. Engrg. 109 (1993), 281–292. (1993) MR1245979DOI10.1016/0045-7825(93)90082-9
  6. 10.1080/03605309408821073, Comm. Partial Differential Equations 19 (1994), 1763–1803. (1994) MR1301173DOI10.1080/03605309408821073
  7. Electrorgeological fluids based on polyurethane dispersions, In: Electrorheological Fluids, R. Tao, G. D. Roy (eds.), World Scientific, 1994, pp. 67–83. (1994) 
  8. Materials for ER-fluids, Int. J. Mod. Phys.  B 23/24 (1996), 2951–2964. (1996) 
  9. 10.1007/BF01262690, Arch. Rational Mech. Anal. 13 (1963), 167–178. (1963) MR0153153DOI10.1007/BF01262690
  10. Maximal function on generalized Lebesgue spaces L p ( · ) , Math. Inequ. Appl. 7 (2004), 245–253, Preprint 2002-02, University Freiburg. (2004) Zbl1071.42014MR2057643
  11. 10.1002/mana.200310157, Math. Nachr. 268 (2004), 31–43. (2004) Zbl1065.46024MR2054530DOI10.1002/mana.200310157
  12. Theoretical and numerical results for electrorheological fluids, PhD. thesis, University Freiburg, 2002. (2002) Zbl1022.76001
  13. On time discretizations for generalized Newtonian fluids, In: Nonlinear Problems in Mathematical Physics and Related Topics II. In honour of Professor O. A. Ladyzhenskaya, M. Sh. Birman, S. Hildebrandt, V. Solonnikov, and N. N. Uraltseva (eds.), Kluwer/Plenum, New York, 2002, pp. 89–118. (2002) MR1971992
  14. Strong solutions for generalized Newtonian fluids, J. Math. Fluid. Mech, Accepted. Preprint  2003-8, University Freiburg. MR2166983
  15. Calderón-Zygmund operators on generalized Lebesgue spaces L p ( · ) and problems related to fluid dynamics, J. Reine Angew. Math. 563 (2003), 197–220. (2003) MR2009242
  16. Integral operators on the halfspace in generalized Lebesgue spaces L p ( · ) , Part  I, J. Math. Anal. Appl. (2004), 559–571. (2004) MR2086975
  17. Integral operators on the halfspace in generalized Lebesgue spaces L p ( · ) , Part II, J. Math. Anal. Appl. (2004), 572–588. (2004) MR2086976
  18. Theoretische Untersuchungen von elektrorheologischen Flüssigkeiten bei homogenen und inhomogenen elektrischen Feldern, Shaker Verlag, Aachen, 2000. (2000) Zbl0958.76003
  19. Modeling micropolar electrorheological fluids, Accepted. Preprint  2003-11, University Freiburg. 
  20. Electrodynamics of Continua, Vol. I and II, Springer-Verlag, New York, 1989. (1989) 
  21. Problems due to the no-slip boundary in incompressible fluid dynamics, In: Geometric Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin, 2003, pp. 559–571. (2003) MR2008356
  22. An existence result for fluids with shear dependent viscosity—steady flows, Nonlinear Anal. 30 (1997), 3041–3049. (1997) MR1602949
  23. Cartesian currents in the calculus of variations. II. Variational integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Vol.  38, Springer-Verlag, Berlin, 1998. (1998) MR1645082
  24. Direct Methods in the Calculus of Variations, Unione Matematica Italiana, Bologna, 1994. (Italian) (1994) Zbl0942.49002MR1707291
  25. Relativistic continuum physics: Electromagnetic interactions, In: Continuum Physics, A. C. Eringen (ed.), Academic Press, , 1976, pp. 130–221. (1976) 
  26. 10.1103/PhysRevLett.68.1519, Phys. Rev. Letters 68 (1992), 1519–1522. (1992) DOI10.1103/PhysRevLett.68.1519
  27. Field Matter Interactions in Thermoelastic Solids, Lecture Notes in Physics, Vol.  88, Springer-Verlag, Berlin, 1978. (1978) MR0550607
  28. On spaces L p ( x ) and W k , p ( x ) , Czechoslovak Math.  J. 41 (1991), 592–618. (1991) 
  29. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969. (French) (1969) Zbl0189.40603MR0259693
  30. Weak and Measure-Valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computations, Vol. 13, Chapman & Hall, London, 1996. (1996) MR1409366
  31. 10.1142/S0218202593000047, Math. Models Methods Appl. Sci. 3 (1993), 35–63. (1993) MR1203271DOI10.1142/S0218202593000047
  32. On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains. The case p 2 , Adv. Differential Equations 6 (2001), 257–302. (2001) MR1799487
  33. 10.1142/S0218202595000449, Math. Models Methods Appl. Sci. 5 (1995), 789–812. (1995) MR1348587DOI10.1142/S0218202595000449
  34. Decomposition theorems and their application to non-linear electro- and magneto-static boundary value problems, Lecture Notes in Math., Vol. 1357, Springer-Verlag, 1988, pp. 317–340. (1988) MR0976242
  35. Electromagnetic forces in deformable continua, Mechanics Today, Vol. 4, S.  Nemat-Nasser (ed.), Pergamon Press, 1978, pp. 209–306. (1978) Zbl0379.73100
  36. Mechanism and models, Materials, Sciences and Engineering R17 (1966), 57–103. (1966) 
  37. On fully implicit space-time discretization for motions of incompressible fluids with shear dependent viscosities: The case p 2 , SIAM J. Numer. Anal. 39 (2001), 241–249. (2001) MR1860723
  38. 10.1016/0093-6413(96)00038-9, Mech. Research Comm. 23 (1996), 401–407. (1996) DOI10.1016/0093-6413(96)00038-9
  39. 10.1007/s001610100034, Cont. Mech. and Thermodynamics 13 (2001), 59–78. (2001) DOI10.1007/s001610100034
  40. Helsinki research group on variable exponent Lebesgue and Sobolev spaces, http: //www.math.helsinki.fi/analysis/varsobgroup/. 
  41. A note on steady flow of fluids with shear dependent viscosity. Proceedings of the Second World Congress of Nonlinear Analysts (Athens, 1996), Nonlinear Anal. 30 (1997), 3029–3039. (1997) MR1602945
  42. Flow of shear dependent electrorheological fluids: Unsteady space periodic case, In: Applied Nonlinear Analysis, A. Sequeira (ed.), Kluwer/Plenum, New York, 1999, pp. 485–504. (1999) MR1727468
  43. Electrorheological fluids: Modeling and mathematical theory, RIMS  Kokyuroku 1146 (2000), 16–38. (2000) MR1788852
  44. Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, Vol.  1748, Springer-Verlag, Berlin, 2000. (2000) MR1810360
  45. The Non-Linear Field Theories of Mechanics. Handbuch der Physik, Vol.  III/3, Springer-Verlag, New York, 1965. (1965) MR0193816
  46. Der Einfluß der Elektrodenoberfläche und der Strömungsform auf den elektrorheologischen Effekt, PhD. thesis, University Erlangen-Nürnberg, 2000. (2000) 
  47. 10.1007/s003480050405, Experiments in Fluids 28 (2000), 455–461. (2000) DOI10.1007/s003480050405

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.