Modeling, mathematical and numerical analysis of electrorheological fluids
Applications of Mathematics (2004)
- Volume: 49, Issue: 6, page 565-609
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topRůžička, Michael. "Modeling, mathematical and numerical analysis of electrorheological fluids." Applications of Mathematics 49.6 (2004): 565-609. <http://eudml.org/doc/33201>.
@article{Růžička2004,
abstract = {Many electrorheological fluids are suspensions consisting of solid particles and a carrier oil. If such a suspension is exposed to a strong electric field the effective viscosity increases dramatically. In this paper we first derive a model which captures this behaviour. For the resulting system of equations we then prove local in time existence of strong solutions for large data. For these solutions we finally derive error estimates for a fully implicit time-discretization.},
author = {Růžička, Michael},
journal = {Applications of Mathematics},
keywords = {Maxwell's equations; electrorheological fluids; constitutive relations; Galerkin approximation; Maxwell equations; electrorheological fluids; constitutive relations; Galerkin approximation},
language = {eng},
number = {6},
pages = {565-609},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Modeling, mathematical and numerical analysis of electrorheological fluids},
url = {http://eudml.org/doc/33201},
volume = {49},
year = {2004},
}
TY - JOUR
AU - Růžička, Michael
TI - Modeling, mathematical and numerical analysis of electrorheological fluids
JO - Applications of Mathematics
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 6
SP - 565
EP - 609
AB - Many electrorheological fluids are suspensions consisting of solid particles and a carrier oil. If such a suspension is exposed to a strong electric field the effective viscosity increases dramatically. In this paper we first derive a model which captures this behaviour. For the resulting system of equations we then prove local in time existence of strong solutions for large data. For these solutions we finally derive error estimates for a fully implicit time-discretization.
LA - eng
KW - Maxwell's equations; electrorheological fluids; constitutive relations; Galerkin approximation; Maxwell equations; electrorheological fluids; constitutive relations; Galerkin approximation
UR - http://eudml.org/doc/33201
ER -
References
top- Effects of nonuniform electric field on slit flow of an electrorheological fluid, J. Rheol. 39 (1995), 1327–1341. (1995)
- Effects of electrode morphology on the slit flow of an electrorheological fluid, J. Non-Newtonian Fluid Mech. 63 (1966), 45–61. (1966)
- 10.1016/S0255-2701(97)00002-0, Chem. Eng. and Proc. 36 (1997), 281–289. (1997) DOI10.1016/S0255-2701(97)00002-0
- 10.1051/m2an/1998320708431, RAIRO Modél. Math. Anal. Numér. 32 (1998), 843–858. (1998) MR1654432DOI10.1051/m2an/1998320708431
- 10.1016/0045-7825(93)90082-9, Comput. Methods Appl. Mech. Engrg. 109 (1993), 281–292. (1993) MR1245979DOI10.1016/0045-7825(93)90082-9
- 10.1080/03605309408821073, Comm. Partial Differential Equations 19 (1994), 1763–1803. (1994) MR1301173DOI10.1080/03605309408821073
- Electrorgeological fluids based on polyurethane dispersions, In: Electrorheological Fluids, R. Tao, G. D. Roy (eds.), World Scientific, 1994, pp. 67–83. (1994)
- Materials for ER-fluids, Int. J. Mod. Phys. B 23/24 (1996), 2951–2964. (1996)
- 10.1007/BF01262690, Arch. Rational Mech. Anal. 13 (1963), 167–178. (1963) MR0153153DOI10.1007/BF01262690
- Maximal function on generalized Lebesgue spaces , Math. Inequ. Appl. 7 (2004), 245–253, Preprint 2002-02, University Freiburg. (2004) Zbl1071.42014MR2057643
- 10.1002/mana.200310157, Math. Nachr. 268 (2004), 31–43. (2004) Zbl1065.46024MR2054530DOI10.1002/mana.200310157
- Theoretical and numerical results for electrorheological fluids, PhD. thesis, University Freiburg, 2002. (2002) Zbl1022.76001
- On time discretizations for generalized Newtonian fluids, In: Nonlinear Problems in Mathematical Physics and Related Topics II. In honour of Professor O. A. Ladyzhenskaya, M. Sh. Birman, S. Hildebrandt, V. Solonnikov, and N. N. Uraltseva (eds.), Kluwer/Plenum, New York, 2002, pp. 89–118. (2002) MR1971992
- Strong solutions for generalized Newtonian fluids, J. Math. Fluid. Mech, Accepted. Preprint 2003-8, University Freiburg. MR2166983
- Calderón-Zygmund operators on generalized Lebesgue spaces and problems related to fluid dynamics, J. Reine Angew. Math. 563 (2003), 197–220. (2003) MR2009242
- Integral operators on the halfspace in generalized Lebesgue spaces , Part I, J. Math. Anal. Appl. (2004), 559–571. (2004) MR2086975
- Integral operators on the halfspace in generalized Lebesgue spaces , Part II, J. Math. Anal. Appl. (2004), 572–588. (2004) MR2086976
- Theoretische Untersuchungen von elektrorheologischen Flüssigkeiten bei homogenen und inhomogenen elektrischen Feldern, Shaker Verlag, Aachen, 2000. (2000) Zbl0958.76003
- Modeling micropolar electrorheological fluids, Accepted. Preprint 2003-11, University Freiburg.
- Electrodynamics of Continua, Vol. I and II, Springer-Verlag, New York, 1989. (1989)
- Problems due to the no-slip boundary in incompressible fluid dynamics, In: Geometric Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin, 2003, pp. 559–571. (2003) MR2008356
- An existence result for fluids with shear dependent viscosity—steady flows, Nonlinear Anal. 30 (1997), 3041–3049. (1997) MR1602949
- Cartesian currents in the calculus of variations. II. Variational integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Vol. 38, Springer-Verlag, Berlin, 1998. (1998) MR1645082
- Direct Methods in the Calculus of Variations, Unione Matematica Italiana, Bologna, 1994. (Italian) (1994) Zbl0942.49002MR1707291
- Relativistic continuum physics: Electromagnetic interactions, In: Continuum Physics, A. C. Eringen (ed.), Academic Press, , 1976, pp. 130–221. (1976)
- 10.1103/PhysRevLett.68.1519, Phys. Rev. Letters 68 (1992), 1519–1522. (1992) DOI10.1103/PhysRevLett.68.1519
- Field Matter Interactions in Thermoelastic Solids, Lecture Notes in Physics, Vol. 88, Springer-Verlag, Berlin, 1978. (1978) MR0550607
- On spaces and , Czechoslovak Math. J. 41 (1991), 592–618. (1991)
- Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969. (French) (1969) Zbl0189.40603MR0259693
- Weak and Measure-Valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computations, Vol. 13, Chapman & Hall, London, 1996. (1996) MR1409366
- 10.1142/S0218202593000047, Math. Models Methods Appl. Sci. 3 (1993), 35–63. (1993) MR1203271DOI10.1142/S0218202593000047
- On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains. The case , Adv. Differential Equations 6 (2001), 257–302. (2001) MR1799487
- 10.1142/S0218202595000449, Math. Models Methods Appl. Sci. 5 (1995), 789–812. (1995) MR1348587DOI10.1142/S0218202595000449
- Decomposition theorems and their application to non-linear electro- and magneto-static boundary value problems, Lecture Notes in Math., Vol. 1357, Springer-Verlag, 1988, pp. 317–340. (1988) MR0976242
- Electromagnetic forces in deformable continua, Mechanics Today, Vol. 4, S. Nemat-Nasser (ed.), Pergamon Press, 1978, pp. 209–306. (1978) Zbl0379.73100
- Mechanism and models, Materials, Sciences and Engineering R17 (1966), 57–103. (1966)
- On fully implicit space-time discretization for motions of incompressible fluids with shear dependent viscosities: The case , SIAM J. Numer. Anal. 39 (2001), 241–249. (2001) MR1860723
- 10.1016/0093-6413(96)00038-9, Mech. Research Comm. 23 (1996), 401–407. (1996) DOI10.1016/0093-6413(96)00038-9
- 10.1007/s001610100034, Cont. Mech. and Thermodynamics 13 (2001), 59–78. (2001) DOI10.1007/s001610100034
- Helsinki research group on variable exponent Lebesgue and Sobolev spaces, http: //www.math.helsinki.fi/analysis/varsobgroup/.
- A note on steady flow of fluids with shear dependent viscosity. Proceedings of the Second World Congress of Nonlinear Analysts (Athens, 1996), Nonlinear Anal. 30 (1997), 3029–3039. (1997) MR1602945
- Flow of shear dependent electrorheological fluids: Unsteady space periodic case, In: Applied Nonlinear Analysis, A. Sequeira (ed.), Kluwer/Plenum, New York, 1999, pp. 485–504. (1999) MR1727468
- Electrorheological fluids: Modeling and mathematical theory, RIMS Kokyuroku 1146 (2000), 16–38. (2000) MR1788852
- Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, Vol. 1748, Springer-Verlag, Berlin, 2000. (2000) MR1810360
- The Non-Linear Field Theories of Mechanics. Handbuch der Physik, Vol. III/3, Springer-Verlag, New York, 1965. (1965) MR0193816
- Der Einfluß der Elektrodenoberfläche und der Strömungsform auf den elektrorheologischen Effekt, PhD. thesis, University Erlangen-Nürnberg, 2000. (2000)
- 10.1007/s003480050405, Experiments in Fluids 28 (2000), 455–461. (2000) DOI10.1007/s003480050405
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.