Exponential stability via aperiodically intermittent control of complex-variable time delayed chaotic systems
Kybernetika (2020)
- Volume: 56, Issue: 4, page 753-766
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topZheng, Song. "Exponential stability via aperiodically intermittent control of complex-variable time delayed chaotic systems." Kybernetika 56.4 (2020): 753-766. <http://eudml.org/doc/297046>.
@article{Zheng2020,
abstract = {This paper focuses on the problem of exponential stability analysis of uncertain complex-variable time delayed chaotic systems, where the parameters perturbation are bounded assumed. The aperiodically intermittent control strategy is proposed to stabilize the complex-variable delayed systems. By taking the advantage of Lyapunov method in complex field and utilizing inequality technology, some sufficient conditions are derived to ensure the stability of uncertain complex-variable delayed systems, where the constrained time delay are considered in the conditions obtained. To protrude the availability of the devised stability scheme, simulation examples are ultimately demonstrated.},
author = {Zheng, Song},
journal = {Kybernetika},
keywords = {complex-variable system; delayed; uncertain; stability; aperiodically intermittent control},
language = {eng},
number = {4},
pages = {753-766},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Exponential stability via aperiodically intermittent control of complex-variable time delayed chaotic systems},
url = {http://eudml.org/doc/297046},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Zheng, Song
TI - Exponential stability via aperiodically intermittent control of complex-variable time delayed chaotic systems
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 4
SP - 753
EP - 766
AB - This paper focuses on the problem of exponential stability analysis of uncertain complex-variable time delayed chaotic systems, where the parameters perturbation are bounded assumed. The aperiodically intermittent control strategy is proposed to stabilize the complex-variable delayed systems. By taking the advantage of Lyapunov method in complex field and utilizing inequality technology, some sufficient conditions are derived to ensure the stability of uncertain complex-variable delayed systems, where the constrained time delay are considered in the conditions obtained. To protrude the availability of the devised stability scheme, simulation examples are ultimately demonstrated.
LA - eng
KW - complex-variable system; delayed; uncertain; stability; aperiodically intermittent control
UR - http://eudml.org/doc/297046
ER -
References
top- Cai, S., Zhou, P., Liu, Z., 10.1063/1.4886186, Chaos 24 (2014), 033102. MR3404400DOI10.1063/1.4886186
- Carr, T. W., Schwartz, I. B., 10.1103/physreve.51.5109, Phys. Rev. E 51 (1995), 5109-5111. DOI10.1103/physreve.51.5109
- Chen, T., Liu, X., Lu, W., 10.1109/tcsi.2007.895383, IEEE Trans. Circuits Systems I 54 (2007), 1317-1326. MR2370589DOI10.1109/tcsi.2007.895383
- Dong, Y., Liang, S., Guo, L., Wang, W., 10.1093/imamci/dnx003, IMA J. Math. Control Inform. 35 (2018), 3, 963-986. MR3858299DOI10.1093/imamci/dnx003
- Fang, T., Sun, J., 10.1016/j.amc.2014.04.062, Appl. Math. Comput. 240 (2014), 102-108. MR3213676DOI10.1016/j.amc.2014.04.062
- Fang, T., Sun, J., 10.1016/j.nahs.2014.04.004, Nonlinear Analysis: Hybrid Systems 14 (2015), 38-46. MR3228049DOI10.1016/j.nahs.2014.04.004
- Fowler, A. C., Gibbon, J. D., McGuinness, M. J., 10.1016/0167-2789(82)90057-4, Physica D 4 (1982), 139-163. Zbl1194.37039MR0653770DOI10.1016/0167-2789(82)90057-4
- Huang, T., Li, C., Liu, X., 10.1063/1.2967848, Chaos 18 (2008), 033122. MR2464303DOI10.1063/1.2967848
- Jiang, C., Zhang, F., Li, T., 10.1002/mma.4765, Math. Methods Appl. Sci. 41 (2018), 2625-2638. MR3790715DOI10.1002/mma.4765
- Li, C. D., Liao, X. F., Huang, T. W., 10.1063/1.2430394, Chaos 17 (2007), 013103. MR2319024DOI10.1063/1.2430394
- Li, N., Sun, H., Zhang, Q., 10.1049/iet-cta.2013.0159, IET Control Theory Appl. 159 (2013), 1725-1736. MR3115117DOI10.1049/iet-cta.2013.0159
- Liang, Y., Wang, X., 10.1016/j.physa.2013.10.002, Physica A 395 (2014), 434-444. MR3133676DOI10.1016/j.physa.2013.10.002
- Liu, X., Chen, T., 10.1109/tac.2015.2416912, IEEE Trans. Automat. Control 60 (2015), 3316-3321. MR3432701DOI10.1109/tac.2015.2416912
- Liu, X., Liu, Y., Zhou, L., 10.1016/j.neucom.2015.08.027, Neurocomputing 173 (2016), 759-767. DOI10.1016/j.neucom.2015.08.027
- Liu, L., Wang, Z., Huang, Z., Zhang, H., 10.1109/tfuzz.2016.2566803, IEEE Trans. Fuzzy Systems 25 (2007), 527-542. DOI10.1109/tfuzz.2016.2566803
- Mahmoud, G. M., Bountis, T., Mahmoud, E. E., 10.1142/s0218127407019962, Int. J. Bifurcat. Chaos 17 (2014), 4295-4308. MR2394229DOI10.1142/s0218127407019962
- Mahmoud, G., Mahmoud, E., Arafa, A., 10.1007/s11071-015-1912-9, Nonlinear Dynamics 80 (2015), 855-869. MR3324303DOI10.1007/s11071-015-1912-9
- Mahmoud, G., Mahmoud, E., Arafa, A., 10.1002/mma.4045, Math. Methods Appl. Sci. 40 (2017), 1214-1222. MR3610726DOI10.1002/mma.4045
- Ning, C. Z., Haken, H., 10.1103/physreva.41.3826, Phys. Rev. A 41 (1990), 3826-3837. DOI10.1103/physreva.41.3826
- Ott, E., Grebogi, C., Yorke, J., 10.1103/physrevlett.64.1196, Phys. Rev. Lett. 64 (1990), 1196. Zbl0964.37502MR1041523DOI10.1103/physrevlett.64.1196
- Pecora, L. M., Carroll, T. L., 10.1103/physrevlett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. Zbl1098.37553MR1038263DOI10.1103/physrevlett.64.821
- Qiu, J., Cheng, L., X, Chen, Lu, J., He, H., 10.1007/s11071-015-2445-y, Nonlinear Dynamics 83 (2016), 1757-1771. MR3449506DOI10.1007/s11071-015-2445-y
- Starrett, J., 10.1103/physreve.67.036203, Phys. Rev. E 67 (2003), 036203. DOI10.1103/physreve.67.036203
- Xia, W., Cao, J., 10.1063/1.3071933, Chaos 19 (2009), 013120. MR2513764DOI10.1063/1.3071933
- Zheng, S., 10.1007/s11071-013-1015-4, Nonlinear Dynamics 74 (2013), 957-967. Zbl1306.34069MR3127104DOI10.1007/s11071-013-1015-4
- Zheng, S., 10.1007/s11071-014-1652-2, Nonlinear Dynamics 79 (2015), 147-161. MR3302683DOI10.1007/s11071-014-1652-2
- Zheng, S., 10.1016/j.isatra.2015.05.016, ISA Trans. 58 (2015), 20-26. DOI10.1016/j.isatra.2015.05.016
- Zheng, S., 10.1002/cplx.21641, Complexity 21 (2016), 131-142. MR3508409DOI10.1002/cplx.21641
- Zheng, S., 10.1016/j.jfranklin.2016.02.006, J. Franklin Inst. 353 (2016), 1460-1477. MR3472559DOI10.1016/j.jfranklin.2016.02.006
- Zheng, S., 10.14736/kyb-2018-5-0937, Kybernetika 54 (2018), 937-957. MR3893129DOI10.14736/kyb-2018-5-0937
- Zheng, S., Bi, Q., Cai, G., 10.1016/j.physleta.2009.03.001, Phys. Lett. A 373 (2009), 1553-1559. MR2513416DOI10.1016/j.physleta.2009.03.001
- Zochowski, M., 10.1016/s0167-2789(00)00112-3, Physica D 145 (2000), 181-190. DOI10.1016/s0167-2789(00)00112-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.