Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods
Kybernetika (2018)
- Volume: 54, Issue: 5, page 937-957
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topZheng, Song. "Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods." Kybernetika 54.5 (2018): 937-957. <http://eudml.org/doc/294530>.
@article{Zheng2018,
abstract = {In this paper, an intermittent control approach with multiple switched periods is proposed for the robust exponential stabilization of uncertain complex-variable delayed nonlinear systems with parameters perturbation, in which the considered complex systems have bounded parametric uncertainties. Based on the Lyapunov stability theory and comparison theorem of differential equations, some stability criteria are established for a class of uncertain complex delayed nonlinear systems with parameters perturbation. Finally, some numerical simulations are given to show the effectiveness and the benefits of the theoretical results.},
author = {Zheng, Song},
journal = {Kybernetika},
keywords = {complex delayed system; uncertain; stabilization; intermittent control; switched},
language = {eng},
number = {5},
pages = {937-957},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods},
url = {http://eudml.org/doc/294530},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Zheng, Song
TI - Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 5
SP - 937
EP - 957
AB - In this paper, an intermittent control approach with multiple switched periods is proposed for the robust exponential stabilization of uncertain complex-variable delayed nonlinear systems with parameters perturbation, in which the considered complex systems have bounded parametric uncertainties. Based on the Lyapunov stability theory and comparison theorem of differential equations, some stability criteria are established for a class of uncertain complex delayed nonlinear systems with parameters perturbation. Finally, some numerical simulations are given to show the effectiveness and the benefits of the theoretical results.
LA - eng
KW - complex delayed system; uncertain; stabilization; intermittent control; switched
UR - http://eudml.org/doc/294530
ER -
References
top- Arefi, M. M., 10.1115/1.4033383, J. Comput. Nonlinear Dynamics 11 (2016), 041024-6. DOI10.1115/1.4033383
- Cai, S., Zhou, P., Liu, Z., 10.1063/1.4886186, Chaos 24 (2014), 033102. MR3404400DOI10.1063/1.4886186
- Carr, T. W., Schwartz, I. B., 10.1103/physreve.51.5109, Phys. Rev. E 51 (1995), 5109-5111. DOI10.1103/physreve.51.5109
- Fang, T., Sun, J., 10.1049/iet-cta.2013.0116, IET Control Theory Appl. 7 (2013), 1152-1159. MR3113222DOI10.1049/iet-cta.2013.0116
- Fang, T., Sun, J., 10.1016/j.nahs.2014.04.004, Nonlinear Analysis: Hybrid Systems 14 (2014), 38-46. MR3228049DOI10.1016/j.nahs.2014.04.004
- Fowler, A. C., Gibbon, J. D., McGuinness, M. J., 10.1016/0167-2789(82)90057-4, Physica D 4 (1982), 139-163. Zbl1194.37039MR0653770DOI10.1016/0167-2789(82)90057-4
- Han, Q. L., 10.1016/j.physleta.2006.08.076, Physics Lett. A 360 (2007), 563-569. Zbl1236.93072DOI10.1016/j.physleta.2006.08.076
- Huang, T. W., Li, C. D., Liu, X., 10.1063/1.2967848, Chaos 18 (2008), 033122. MR2478154DOI10.1063/1.2967848
- Li, C. D., Liao, X. F., Huang, T. W., 10.1063/1.2430394, Chaos 17 (2007), 013103. MR2319024DOI10.1063/1.2430394
- Li, N., Sun, H., Zhang, Q, 10.1049/iet-cta.2013.0159, IET Control Theory Appl. 159 (2013), 1725-1736. MR3115117DOI10.1049/iet-cta.2013.0159
- Liang, Y., Wang, X., 10.1016/j.physa.2013.10.002, Physica A 395 (2014), 434-444. MR3133676DOI10.1016/j.physa.2013.10.002
- Liu, X., Chen, T., 10.1109/tac.2015.2416912, IEEE Trans. Automat. Control 60 (2015), 3316-3321. MR3432701DOI10.1109/tac.2015.2416912
- Liu, X., Chen, T., 10.1109/TNNLS.2014.2311838, IEEE Trans. Neural Networks Learning Systems 26 (2015), 113-126. MR3449567DOI10.1109/TNNLS.2014.2311838
- Lu, J., Ho, D. W. C., Cao, J., 10.1016/j.automatica.2010.04.005, Automatica 46 (2010), 1215-1221. MR2877227DOI10.1016/j.automatica.2010.04.005
- Luo, C., Wang, X., 10.1007/s11071-012-0656-z, Nonlinear Dynamics 71 (2013), 241-257. MR3010577DOI10.1007/s11071-012-0656-z
- Mahmoud, E. E., 10.1016/j.mcm.2011.11.053, Math. Computer Modelling 55 (2012), 1951-1962. MR2899141DOI10.1016/j.mcm.2011.11.053
- Mahmoud, G. M., Mahmoud, E. E., Arafa, A. A., 10.1007/s11071-015-1912-9, Nonlinear Dynamics 80 (2015), 855-869. MR3324303DOI10.1007/s11071-015-1912-9
- Mahmoud, G. M., Bountis, T., Mahmoud, E. E., 10.1142/s0218127407019962, Int. J. Bifurcation Chaos 17 (2007), 4295-4308. MR2394229DOI10.1142/s0218127407019962
- Morgül, Ö., 10.1016/s0375-9601(03)00866-1, Phys. Lett. A 314 (2003), 278-285. MR2008693DOI10.1016/s0375-9601(03)00866-1
- Ning, C. Z., Haken, H., 10.1103/physreva.41.3826, Phys. Rev. A 41 (1990), 3826-3837. DOI10.1103/physreva.41.3826
- Ott, E., Grebogi, C., Yorke, J., 10.1103/physrevlett.64.1196, Phys. Rev. Lett. 64 (1990), 1196. Zbl0964.37502MR1041523DOI10.1103/physrevlett.64.1196
- Pecora, L. M., Carroll, T. L., 10.1103/physrevlett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. Zbl1098.37553MR1038263DOI10.1103/physrevlett.64.821
- Qiu, J., Cheng, L., X, Chen, Lu, J., He, H., 10.1007/s11071-015-2445-y, Nonlinear Dynamics 83 (2016), 1757-1771. MR3449506DOI10.1007/s11071-015-2445-y
- Starrett, J., 10.1103/PhysRevE.67.036203, Phys. Rev. E 67 (2003), 036203. DOI10.1103/PhysRevE.67.036203
- Sun, W., Wang, S., Wang, G., Wu, Y., 10.1007/s11071-014-1838-7, Nonlinear Dynamics 79 (2015), 2659-2666. MR3317469DOI10.1007/s11071-014-1838-7
- Wang, X., He, Y., 10.1016/j.physleta.2007.07.053, Phys. Lett. A 372 (2008), 435-441. DOI10.1016/j.physleta.2007.07.053
- Xia, W., Cao, J., 10.1063/1.3071933, Chaos 19 (2009), 013120. MR2513764DOI10.1063/1.3071933
- Yang, Z., Xu, D., 10.1109/tac.2007.902748, IEEE Trans. Automat. Control 52 (2007), 1448-1454. MR2342720DOI10.1109/tac.2007.902748
- Zhang, D. W., Han, Q. L., Jia, X. C., 10.1109/tcyb.2014.2354421, IEEE Trans. Cybernet. 45 (2015), 1511-1524. MR1859200DOI10.1109/tcyb.2014.2354421
- Zhang, D. W., Han, Q. L., Jia, X. C., 10.1016/j.fss.2014.12.015, Fuzzy Sets Systems 273 (2015), 26-48. MR3347269DOI10.1016/j.fss.2014.12.015
- Zheng, S., 10.1007/s11071-011-0175-3, Nonlinear Dynamics 67 (2012), 2621-2630. Zbl1243.93042MR2881569DOI10.1007/s11071-011-0175-3
- Zheng, S., 10.1007/s11071-013-1015-4, Nonlinear Dynamics 74 (2013), 957-967. Zbl1306.34069MR3127104DOI10.1007/s11071-013-1015-4
- Zheng, S., 10.1016/j.isatra.2015.05.016, ISA Trans. 58 (2015), 20-26. DOI10.1016/j.isatra.2015.05.016
- Zheng, S., 10.1016/j.jfranklin.2016.02.006, J. Franklin Inst. 353 (2016), 1460-1477. MR3472559DOI10.1016/j.jfranklin.2016.02.006
- Zheng, S., 10.1002/cplx.21641, Complexity 21 (2016), 131-142. MR3508409DOI10.1002/cplx.21641
- Zochowski, M., 10.1016/s0167-2789(00)00112-3, Physica D 145 (2000), 181-190. DOI10.1016/s0167-2789(00)00112-3
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.