Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods

Song Zheng

Kybernetika (2018)

  • Volume: 54, Issue: 5, page 937-957
  • ISSN: 0023-5954

Abstract

top
In this paper, an intermittent control approach with multiple switched periods is proposed for the robust exponential stabilization of uncertain complex-variable delayed nonlinear systems with parameters perturbation, in which the considered complex systems have bounded parametric uncertainties. Based on the Lyapunov stability theory and comparison theorem of differential equations, some stability criteria are established for a class of uncertain complex delayed nonlinear systems with parameters perturbation. Finally, some numerical simulations are given to show the effectiveness and the benefits of the theoretical results.

How to cite

top

Zheng, Song. "Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods." Kybernetika 54.5 (2018): 937-957. <http://eudml.org/doc/294530>.

@article{Zheng2018,
abstract = {In this paper, an intermittent control approach with multiple switched periods is proposed for the robust exponential stabilization of uncertain complex-variable delayed nonlinear systems with parameters perturbation, in which the considered complex systems have bounded parametric uncertainties. Based on the Lyapunov stability theory and comparison theorem of differential equations, some stability criteria are established for a class of uncertain complex delayed nonlinear systems with parameters perturbation. Finally, some numerical simulations are given to show the effectiveness and the benefits of the theoretical results.},
author = {Zheng, Song},
journal = {Kybernetika},
keywords = {complex delayed system; uncertain; stabilization; intermittent control; switched},
language = {eng},
number = {5},
pages = {937-957},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods},
url = {http://eudml.org/doc/294530},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Zheng, Song
TI - Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 5
SP - 937
EP - 957
AB - In this paper, an intermittent control approach with multiple switched periods is proposed for the robust exponential stabilization of uncertain complex-variable delayed nonlinear systems with parameters perturbation, in which the considered complex systems have bounded parametric uncertainties. Based on the Lyapunov stability theory and comparison theorem of differential equations, some stability criteria are established for a class of uncertain complex delayed nonlinear systems with parameters perturbation. Finally, some numerical simulations are given to show the effectiveness and the benefits of the theoretical results.
LA - eng
KW - complex delayed system; uncertain; stabilization; intermittent control; switched
UR - http://eudml.org/doc/294530
ER -

References

top
  1. Arefi, M. M., 10.1115/1.4033383, J. Comput. Nonlinear Dynamics 11 (2016), 041024-6. DOI10.1115/1.4033383
  2. Cai, S., Zhou, P., Liu, Z., 10.1063/1.4886186, Chaos 24 (2014), 033102. MR3404400DOI10.1063/1.4886186
  3. Carr, T. W., Schwartz, I. B., 10.1103/physreve.51.5109, Phys. Rev. E 51 (1995), 5109-5111. DOI10.1103/physreve.51.5109
  4. Fang, T., Sun, J., 10.1049/iet-cta.2013.0116, IET Control Theory Appl. 7 (2013), 1152-1159. MR3113222DOI10.1049/iet-cta.2013.0116
  5. Fang, T., Sun, J., 10.1016/j.nahs.2014.04.004, Nonlinear Analysis: Hybrid Systems 14 (2014), 38-46. MR3228049DOI10.1016/j.nahs.2014.04.004
  6. Fowler, A. C., Gibbon, J. D., McGuinness, M. J., 10.1016/0167-2789(82)90057-4, Physica D 4 (1982), 139-163. Zbl1194.37039MR0653770DOI10.1016/0167-2789(82)90057-4
  7. Han, Q. L., 10.1016/j.physleta.2006.08.076, Physics Lett. A 360 (2007), 563-569. Zbl1236.93072DOI10.1016/j.physleta.2006.08.076
  8. Huang, T. W., Li, C. D., Liu, X., 10.1063/1.2967848, Chaos 18 (2008), 033122. MR2478154DOI10.1063/1.2967848
  9. Li, C. D., Liao, X. F., Huang, T. W., 10.1063/1.2430394, Chaos 17 (2007), 013103. MR2319024DOI10.1063/1.2430394
  10. Li, N., Sun, H., Zhang, Q, 10.1049/iet-cta.2013.0159, IET Control Theory Appl. 159 (2013), 1725-1736. MR3115117DOI10.1049/iet-cta.2013.0159
  11. Liang, Y., Wang, X., 10.1016/j.physa.2013.10.002, Physica A 395 (2014), 434-444. MR3133676DOI10.1016/j.physa.2013.10.002
  12. Liu, X., Chen, T., 10.1109/tac.2015.2416912, IEEE Trans. Automat. Control 60 (2015), 3316-3321. MR3432701DOI10.1109/tac.2015.2416912
  13. Liu, X., Chen, T., 10.1109/TNNLS.2014.2311838, IEEE Trans. Neural Networks Learning Systems 26 (2015), 113-126. MR3449567DOI10.1109/TNNLS.2014.2311838
  14. Lu, J., Ho, D. W. C., Cao, J., 10.1016/j.automatica.2010.04.005, Automatica 46 (2010), 1215-1221. MR2877227DOI10.1016/j.automatica.2010.04.005
  15. Luo, C., Wang, X., 10.1007/s11071-012-0656-z, Nonlinear Dynamics 71 (2013), 241-257. MR3010577DOI10.1007/s11071-012-0656-z
  16. Mahmoud, E. E., 10.1016/j.mcm.2011.11.053, Math. Computer Modelling 55 (2012), 1951-1962. MR2899141DOI10.1016/j.mcm.2011.11.053
  17. Mahmoud, G. M., Mahmoud, E. E., Arafa, A. A., 10.1007/s11071-015-1912-9, Nonlinear Dynamics 80 (2015), 855-869. MR3324303DOI10.1007/s11071-015-1912-9
  18. Mahmoud, G. M., Bountis, T., Mahmoud, E. E., 10.1142/s0218127407019962, Int. J. Bifurcation Chaos 17 (2007), 4295-4308. MR2394229DOI10.1142/s0218127407019962
  19. Morgül, Ö., 10.1016/s0375-9601(03)00866-1, Phys. Lett. A 314 (2003), 278-285. MR2008693DOI10.1016/s0375-9601(03)00866-1
  20. Ning, C. Z., Haken, H., 10.1103/physreva.41.3826, Phys. Rev. A 41 (1990), 3826-3837. DOI10.1103/physreva.41.3826
  21. Ott, E., Grebogi, C., Yorke, J., 10.1103/physrevlett.64.1196, Phys. Rev. Lett. 64 (1990), 1196. Zbl0964.37502MR1041523DOI10.1103/physrevlett.64.1196
  22. Pecora, L. M., Carroll, T. L., 10.1103/physrevlett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. Zbl1098.37553MR1038263DOI10.1103/physrevlett.64.821
  23. Qiu, J., Cheng, L., X, Chen, Lu, J., He, H., 10.1007/s11071-015-2445-y, Nonlinear Dynamics 83 (2016), 1757-1771. MR3449506DOI10.1007/s11071-015-2445-y
  24. Starrett, J., 10.1103/PhysRevE.67.036203, Phys. Rev. E 67 (2003), 036203. DOI10.1103/PhysRevE.67.036203
  25. Sun, W., Wang, S., Wang, G., Wu, Y., 10.1007/s11071-014-1838-7, Nonlinear Dynamics 79 (2015), 2659-2666. MR3317469DOI10.1007/s11071-014-1838-7
  26. Wang, X., He, Y., 10.1016/j.physleta.2007.07.053, Phys. Lett. A 372 (2008), 435-441. DOI10.1016/j.physleta.2007.07.053
  27. Xia, W., Cao, J., 10.1063/1.3071933, Chaos 19 (2009), 013120. MR2513764DOI10.1063/1.3071933
  28. Yang, Z., Xu, D., 10.1109/tac.2007.902748, IEEE Trans. Automat. Control 52 (2007), 1448-1454. MR2342720DOI10.1109/tac.2007.902748
  29. Zhang, D. W., Han, Q. L., Jia, X. C., 10.1109/tcyb.2014.2354421, IEEE Trans. Cybernet. 45 (2015), 1511-1524. MR1859200DOI10.1109/tcyb.2014.2354421
  30. Zhang, D. W., Han, Q. L., Jia, X. C., 10.1016/j.fss.2014.12.015, Fuzzy Sets Systems 273 (2015), 26-48. MR3347269DOI10.1016/j.fss.2014.12.015
  31. Zheng, S., 10.1007/s11071-011-0175-3, Nonlinear Dynamics 67 (2012), 2621-2630. Zbl1243.93042MR2881569DOI10.1007/s11071-011-0175-3
  32. Zheng, S., 10.1007/s11071-013-1015-4, Nonlinear Dynamics 74 (2013), 957-967. Zbl1306.34069MR3127104DOI10.1007/s11071-013-1015-4
  33. Zheng, S., 10.1016/j.isatra.2015.05.016, ISA Trans. 58 (2015), 20-26. DOI10.1016/j.isatra.2015.05.016
  34. Zheng, S., 10.1016/j.jfranklin.2016.02.006, J. Franklin Inst. 353 (2016), 1460-1477. MR3472559DOI10.1016/j.jfranklin.2016.02.006
  35. Zheng, S., 10.1002/cplx.21641, Complexity 21 (2016), 131-142. MR3508409DOI10.1002/cplx.21641
  36. Zochowski, M., 10.1016/s0167-2789(00)00112-3, Physica D 145 (2000), 181-190. DOI10.1016/s0167-2789(00)00112-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.