Distributed filtering of networked dynamic systems with non-gaussian noises over sensor networks: A survey
Derui Ding; Qing-Long Han; Xiaohua Ge
Kybernetika (2020)
- Volume: 56, Issue: 1, page 5-34
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topDing, Derui, Han, Qing-Long, and Ge, Xiaohua. "Distributed filtering of networked dynamic systems with non-gaussian noises over sensor networks: A survey." Kybernetika 56.1 (2020): 5-34. <http://eudml.org/doc/297098>.
@article{Ding2020,
abstract = {Sensor networks are regarded as a promising technology in the field of information perception and processing owing to the ease of deployment, cost-effectiveness, flexibility, as well as reliability. The information exchange among sensors inevitably suffers from various network-induced phenomena caused by the limited resource utilization and complex application scenarios, and thus is required to be governed by suitable resource-saving communication mechanisms. It is also noteworthy that noises in system dynamics and sensor measurements are ubiquitous and in general unknown but can be bounded, rather than follow specific Gaussian distributions as assumed in Kalman-type filtering. Particular attention of this paper is paid to a survey of recent advances in distributed filtering of networked dynamic systems with non-Gaussian noises over sensor networks. First, two types of widely employed structures of distributed filters are reviewed, the corresponding analysis is systematically addressed, and some interesting results are provided. The inherent purpose of adding consensus terms into the distributed filters is profoundly disclosed. Then, some representative models characterizing various network-induced phenomena are reviewed and their corresponding analytical strategies are exhibited in detail. Furthermore, recent results on distributed filtering with non-Gaussian noises are sorted out in accordance with different network-induced phenomena and system models. Another emphasis is laid on recent developments of distributed filtering with various communication scheduling, which are summarized based on the inherent characteristics of their dynamic behavior associated with mathematical models. Finally, the state-of-the-art of distributed filtering and challenging issues, ranging from scalability, security to applications, are raised to guide possible future research.},
author = {Ding, Derui, Han, Qing-Long, Ge, Xiaohua},
journal = {Kybernetika},
keywords = {distributed filtering; sensor networks; non-Gaussian noises; network-induced phenomena; communication protocols},
language = {eng},
number = {1},
pages = {5-34},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Distributed filtering of networked dynamic systems with non-gaussian noises over sensor networks: A survey},
url = {http://eudml.org/doc/297098},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Ding, Derui
AU - Han, Qing-Long
AU - Ge, Xiaohua
TI - Distributed filtering of networked dynamic systems with non-gaussian noises over sensor networks: A survey
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 1
SP - 5
EP - 34
AB - Sensor networks are regarded as a promising technology in the field of information perception and processing owing to the ease of deployment, cost-effectiveness, flexibility, as well as reliability. The information exchange among sensors inevitably suffers from various network-induced phenomena caused by the limited resource utilization and complex application scenarios, and thus is required to be governed by suitable resource-saving communication mechanisms. It is also noteworthy that noises in system dynamics and sensor measurements are ubiquitous and in general unknown but can be bounded, rather than follow specific Gaussian distributions as assumed in Kalman-type filtering. Particular attention of this paper is paid to a survey of recent advances in distributed filtering of networked dynamic systems with non-Gaussian noises over sensor networks. First, two types of widely employed structures of distributed filters are reviewed, the corresponding analysis is systematically addressed, and some interesting results are provided. The inherent purpose of adding consensus terms into the distributed filters is profoundly disclosed. Then, some representative models characterizing various network-induced phenomena are reviewed and their corresponding analytical strategies are exhibited in detail. Furthermore, recent results on distributed filtering with non-Gaussian noises are sorted out in accordance with different network-induced phenomena and system models. Another emphasis is laid on recent developments of distributed filtering with various communication scheduling, which are summarized based on the inherent characteristics of their dynamic behavior associated with mathematical models. Finally, the state-of-the-art of distributed filtering and challenging issues, ranging from scalability, security to applications, are raised to guide possible future research.
LA - eng
KW - distributed filtering; sensor networks; non-Gaussian noises; network-induced phenomena; communication protocols
UR - http://eudml.org/doc/297098
ER -
References
top- Aazam, M., Zeadally, S., Harras, K. A., 10.1109/mcom.2018.1700707, IEEE Comm. Magazine 56, (2018), 5, 2018, 46-52. MR3843414DOI10.1109/mcom.2018.1700707
- Ahmad, F., Rasool, A., Ozsoy, E., Rajasekar, S., Sabanovic, A., Elitaş, M., 10.1016/j.rser.2017.06.071, Renewable Sustainable Energy Rev. 81 (2018), 2659-2671. DOI10.1016/j.rser.2017.06.071
- Chen, W., Ding, D., Dong, H., Wei, G., 10.1109/tsmc.2019.2905253, IEEE Trans. Systems Man Cybernet.: Systems 49 (2019), 8, 1688-1697. DOI10.1109/tsmc.2019.2905253
- Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G., 10.1109/tcyb.2018.2885567, IEEE Trans. Cybernet. 50 (2020), 4, 1372-1382. DOI10.1109/tcyb.2018.2885567
- Chen, Y., Wang, Z., Yuan, Y., Date, P., 10.1109/tcyb.2018.2852290, IEEE Trans. Cybernet. 50 (2018), 1, 2-14. DOI10.1109/tcyb.2018.2852290
- Ding, D., Han, Q.-L., Wang, Z., Ge, X., 10.1109/tsmc.2019.2960541, IEEE Trans. Systems Man Cybernet.: Systems. DOI10.1109/tsmc.2019.2960541
- Ding, D., Han, Q.-L., Wang, Z., Ge, X., 10.1109/tii.2019.2905295, IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499. DOI10.1109/tii.2019.2905295
- Ding, D., Wang, Z., Dong, H., Shu, H., 10.1016/j.automatica.2012.05.070, Automatica 48 (2012), 8, 1575-1585. MR2950405DOI10.1016/j.automatica.2012.05.070
- Ding, D., Wang, Z., Han, Q.-L., 10.1016/j.automatica.2019.04.025, Automatica 106 (2019), 221-229. MR3952583DOI10.1016/j.automatica.2019.04.025
- Ding, D., Wang, Z., Han, Q.-L., 10.1109/tac.2019.2934389, IEEE Trans. Automat. Control 65 (2020), 4, 1792-1799. MR4052856DOI10.1109/tac.2019.2934389
- Ding, D., Wang, Z., Han, Q.-L., 10.1109/tcyb.2019.2917543, IEEE Trans. Cybernet. DOI10.1109/tcyb.2019.2917543
- Ding, D., Wang, Z., Han, Q.-L., Wei, G., 10.1109/tcyb.2018.2827037, IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384. DOI10.1109/tcyb.2018.2827037
- Ding, D., Wang, Z., Ho, D. W. C., Wei, G., 10.1016/j.automatica.2016.12.026, Automatica 78 (2017), 231-240. MR3614098DOI10.1016/j.automatica.2016.12.026
- Ding, D., Wang, Z., Lam, J., Shen, B., 10.1109/tac.2014.2380671, IEEE Trans. Automat. Control 60 (2015), 9, 2488-2493. MR3393143DOI10.1109/tac.2014.2380671
- Ding, D., Wang, Z., Shen, B., Shu, H., 10.1109/tnnls.2012.2187926, IEEE Trans. Neural Networks Learning Systems 23 (2012), 5, 725-736. DOI10.1109/tnnls.2012.2187926
- Ding, L., Han, Q.-L., Zhang, X.-M., 10.1109/tii.2018.2884494, IEEE Trans. Industr. Inform. 15 (2019), 7, 3910-3922. DOI10.1109/tii.2018.2884494
- Ding, L., Han, Q.-L., Ge, X., Zhang, X.-M., 10.1109/tcyb.2017.2771560, IEEE Trans. Cybernet. 48 (2018), 4, 1110-1123. MR3554944DOI10.1109/tcyb.2017.2771560
- Ding, L., Han, Q.-L., Wang, L., Sindi, E., 10.1109/tii.2018.2799239, IEEE Trans. Industr. Inform. 14 (2018), 9, 3924-3935. DOI10.1109/tii.2018.2799239
- Dong, H., Wang, Z., Gao, H., 10.1109/tsp.2012.2190599, IEEE Trans. Signal Process. 60 (2012), 6, 3164-3173. MR2924079DOI10.1109/tsp.2012.2190599
- Girard, A., 10.1109/tac.2014.2366855, IEEE Trans. Cybernet. 60 (2015), 7, 1992-1997. MR3365092DOI10.1109/tac.2014.2366855
- Ge, X., Han, Q.-L., 10.1016/j.ins.2014.08.047, Inform. Sci. 291 (2015), 128-142. MR3264405DOI10.1016/j.ins.2014.08.047
- Ge, X., Han, Q.-L., 10.1109/tie.2017.2701778, IEEE Trans. Industr. Electron. 64 (2017), 10, 8118-8127. DOI10.1109/tie.2017.2701778
- Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. DOI10.1109/tcyb.2017.2789296
- Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2769722, IEEE Trans. Cybernet. 49 (2019), 1, 171-183. DOI10.1109/tcyb.2017.2769722
- Ge, X., Han, Q.-L., Zhang, X.-M., Ding, L., Yang, F., 10.1109/tcyb.2019.2917179, IEEE Trans. Cybernet. 50 (2020), 3, 1306-1320. DOI10.1109/tcyb.2019.2917179
- Ge, X., Han, Q.-L., Zhang, X.-M., Ding, D., Yang, F., 10.1016/j.ins.2019.10.057, Inform. Sci. 512 (2020), 1592-1605. MR4038642DOI10.1016/j.ins.2019.10.057
- Ge, X., Han, Q.-L., Zhong, M., Zhang, X.-M., 10.1016/j.automatica.2019.108557, Automatica 109 (2019), 108557. MR3998774DOI10.1016/j.automatica.2019.108557
- Gupta, P., Kumar, P. R., 10.1109/18.825799, IEEE Trans. Inform. Theory 46 (2000), 2, 388-404. MR1748976DOI10.1109/18.825799
- Han, F., Dong, H., Wang, Z., Li, G., 10.1002/rnc.4493, Int. J. Robust Nonlinear Control 29 (2019), 8, 2296-2314. MR3940120DOI10.1002/rnc.4493
- Han, F., Wei, G., Ding, D., Song, Y., 10.1109/tac.2017.2689722, IEEE Trans. Automat. Control 62 (2017), 9, 4784-4790. MR3691904DOI10.1109/tac.2017.2689722
- Heemels, W. P. M. H., Johansson, K. H., Tabuada, P., 10.1109/cdc.2012.6425820, In: Proc. 51st IEEE Conference on Decision and Control, Maui 2012, pp. 3270-3285. MR2952326DOI10.1109/cdc.2012.6425820
- Healy, M., Newe, T., Lewis, E., 10.1109/icsens.2008.4716517, In: 2008 IEEE Sensor, Lecce 2008, pp. 621-624. DOI10.1109/icsens.2008.4716517
- Hill, J. L., Culler, D. E., 10.1109/mm.2002.1134340, IEEE Micro 22, (2002), 6, 12-24. DOI10.1109/mm.2002.1134340
- Hu, J., Wang, Z., Liang, J., Dong, H., 10.1016/j.jfranklin.2014.12.006, J. Franklin Inst. 352 (2015), 3750-3763. MR3385893DOI10.1016/j.jfranklin.2014.12.006
- Hu, S., Yue, D., Chen, X., Cheng, Z., Xie, X., 10.1109/tsmc.2019.2896249, IEEE Trans. Systems Man Cybernet.: Systems. DOI10.1109/tsmc.2019.2896249
- Jenabzadeh, A., Safarinejadian, B., 10.1016/j.automatica.2017.08.005, Automatica 86 (2017), 53-62. MR3711448DOI10.1016/j.automatica.2017.08.005
- Karray, F., Jmal, M. W., Garcia-Ortiz, A., Abid, M., Obeid, A. M., 10.1016/j.comnet.2018.05.010, Comput. Networks 144, (2018), 89-110. DOI10.1016/j.comnet.2018.05.010
- Li, J.-Y., Zhang, B., Lu, R., Xu, Y., 10.1109/tsmc.2018.2837047, IEEE Trans. Systems Man Cybernet.: Systems. DOI10.1109/tsmc.2018.2837047
- Li, Q., Shen, B., Wang, Z., Shen, W., 10.1016/j.automatica.2019.108681, Automatica 113 (2019), 108681. MR4056010DOI10.1016/j.automatica.2019.108681
- Li, Q., Shen, B., Wang, Z., Huang, T., Luo, J., 10.1109/tcyb.2018.2818941, IEEE Trans. Cybernet. 49 (2019), 5, 1979-1986. MR3891660DOI10.1109/tcyb.2018.2818941
- Liang, J., Wang, Z., Liu, X., 10.1109/tnn.2011.2105501, IEEE Trans. Neural Networks 22 (2011), 3, 486-496. DOI10.1109/tnn.2011.2105501
- Liu, D., Yang, G.-H., 10.1002/rnc.4403, Int. J. Robust Nonlinear Control 29 (2019), 507-518. MR3890676DOI10.1002/rnc.4403
- Liu, J., Gu, Y., Cao, J., Fei, S., 10.1016/j.isatra.2018.07.018, ISA Trans. 81 (2018), 63-75. DOI10.1016/j.isatra.2018.07.018
- Liu, K., Guo, H., Zhang, Q., Xia, Y., 10.1109/tcyb.2019.2897366, IEEE Trans. Cybernet. DOI10.1109/tcyb.2019.2897366
- Liu, Q., Wang, Z., He, X., Zhou, D. H., 10.1109/tii.2015.2444355, IEEE Trans. Industr. Inform. 11 (2015), 6, 1643-1652. MR3671115DOI10.1109/tii.2015.2444355
- Liu, S., Liu, P., 10.1109/tii.2017.2766666, IEEE Trans. Industr. Inform. 14 (2018), 5, 1814-1823. DOI10.1109/tii.2017.2766666
- Liu, S., Wang, Z., Wei, G., Li, M., 10.1109/tcyb.2018.2885653, IEEE Trans. Cybernetics. DOI10.1109/tcyb.2018.2885653
- Liu, Y., Zhao, Y., Wu, F., 10.1049/iet-cta.2015.0654, IET Control Theory Appl. 10 (2016), 4, 431-442. MR3495243DOI10.1049/iet-cta.2015.0654
- Ma, L., Wang, Z., Han, Q.-L., Lam, H.-K., 10.1109/jsen.2017.2654325, IEEE Sensors J. 17 (2017), 7, 2279-2288. DOI10.1109/jsen.2017.2654325
- Ma, L., Wang, Z., Lam, H.-K., Kyriakoulis, N., 10.1109/tcyb.2016.2582081, IEEE Trans. Cybernet. 47 (2017), 11, 3772-3783. DOI10.1109/tcyb.2016.2582081
- Mahmud, R., Toosi, A. N., Ramamohanarao, K., Buyya, R., 10.1109/tii.2019.2952412, IEEE Trans. Industr. Inform. DOI10.1109/tii.2019.2952412
- Marin-Perianu, M., Meratnia, N., Havinga, P., et.al., 10.1109/mwc.2007.4407228, IEEE Wireless Commun. 14, (2007), 6, 57-66. DOI10.1109/mwc.2007.4407228
- Meral, M., Çelík, D., 10.1016/j.arcontrol.2018.11.003, Ann. Rev. Control 47 (2019), 112-132. MR3973204DOI10.1016/j.arcontrol.2018.11.003
- Mihai, V., Dragana, C., Stamatescu, G., Popescu, D., Ichim, L., 10.1109/codit.2018.8394851, In: 5th International Conference on Control, Decision and Information Technologies. Thessaloniki, 2018, pp. 743-747. DOI10.1109/codit.2018.8394851
- Millán, P., Orihuela, L., Vivas, C., Rubio, F., 10.1016/j.automatica.2012.06.093, Automatica 48 (2012), 10, 2726-2729. MR2961178DOI10.1016/j.automatica.2012.06.093
- Olfati-Saber, R., 10.1109/cdc.2007.4434303, In: Proc. 46th IEEE Conference on Decision and Control, New Orleans 2007, pp. 5492-5498. DOI10.1109/cdc.2007.4434303
- Olfati-Saber, R., 10.1109/cdc.2009.5399678, In: Proc. 48h IEEE Conference on Decision and Control, Shanghai 2009, pp. 7036-7042. DOI10.1109/cdc.2009.5399678
- Olfati-Saber, R., Jalalkamali, P., 10.1109/tac.2012.2190184, IEEE Trans. Automat. Control 57 (2012), 10, 2609-2614. MR2991662DOI10.1109/tac.2012.2190184
- Rafi, A., Rehman, A., Ali, G., Akram, J., 10.1109/icomet.2019.8673423, In: 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur 2019, pp. 1-5. DOI10.1109/icomet.2019.8673423
- Rahman, T., Yao, X., Tao, G., Ning, H., Zhou, Z., 10.1109/jsen.2019.2895119, IEEE Sensors J. 19, (2019), 12, 4672-4679. DOI10.1109/jsen.2019.2895119
- Satyanarayanan, M., Schuster, R., Ebling, M., Fettweis, G., Flinck, H., Joshi, K., Sabnani, K., 10.1109/mcom.2015.7060484, IEEE Commun. Magazine 53, (2015), 3, 63-70. DOI10.1109/mcom.2015.7060484
- Sarkar, S., Wankar, R., Srirama, S., Suryadevara, N. K., 10.1109/jsen.2019.2939182, IEEE Sensors J. 20 (2020), 3, 1564-1572. DOI10.1109/jsen.2019.2939182
- Shen, B., Wang, Z., Hung, Y. S., 10.1016/j.automatica.2010.06.025, Automatica 66 (2010), 10, 1682-1688. Zbl1204.93122MR2877323DOI10.1016/j.automatica.2010.06.025
- Shen, B., Wang, Z., Liu, X., 10.1109/tcsi.2011.2112594, IEEE Trans. Circuits Systems I: Regular Papers 58 (2011), 9, 2237-2246. MR2868162DOI10.1109/tcsi.2011.2112594
- Shen, B., Wang, Z., Qiao, H., 10.1109/tnnls.2016.2516030, IEEE Trans. Neural Networks Learning Systems 28 (2017), 5, 1152-1163. MR3721783DOI10.1109/tnnls.2016.2516030
- Song, H., Yu, L., Zhang, W.-A., 10.1049/iet-cta.2013.0432, IET Control Theory Appl. 8 (2014), 3, 202-210. MR3185345DOI10.1049/iet-cta.2013.0432
- Souravlias, D., Parsopoulos, K., 10.1007/s13042-014-0308-3, Int. J. Machine Learning Cybernet. 7 (2016), 3, 451-477. DOI10.1007/s13042-014-0308-3
- Su, H., Li, Z., Ye, Y., 10.1016/j.isatra.2017.06.019, ISA Trans. 71 (2017), 1, 103-111. MR3468618DOI10.1016/j.isatra.2017.06.019
- Su, X., Wu, L., Shi, P., 10.1109/tii.2012.2231085, IEEE Trans. Industr. Inform. 9 (2013), 3, 1739-1750. DOI10.1109/tii.2012.2231085
- Sun, Z., Wei, L., Xu, C., Wang, T., Nie, Y., Xing, X., Lu, J., 10.1109/access.2019.2944858, IEEE Access 14, (2019), 7, 144165-144177. DOI10.1109/access.2019.2944858
- Tan, Y., Xiong, M., Niu, B., Liu, J., Fei, S., 10.1016/j.neucom.2018.07.022, Neurocomputing 315 (2018), 261-271. DOI10.1016/j.neucom.2018.07.022
- Ugrinovskii, V., 10.1016/j.automatica.2010.10.002, Automatica 47 (2011), 1, 1-13. Zbl1209.93152MR2878241DOI10.1016/j.automatica.2010.10.002
- Ugrinovskii, V., Fridman, E., 10.1016/j.sysconle.2014.05.001, Systems Control Lett. 69 (2014), 103-110. Zbl1288.93009MR3212828DOI10.1016/j.sysconle.2014.05.001
- Ugrinovskii, V., 10.1109/tcns.2019.2924192, IEEE Trans. Control Network Systems 7 (2020), 1, 458-470. DOI10.1109/tcns.2019.2924192
- Wan, X., Wang, Z., Han, Q.-L., Wu, M., 10.1109/tcns.2019.2924192, IEEE Trans. Circuits Systems I: Regular Papers 65 (2018), 10, 3481-3491. MR3854691DOI10.1109/tcns.2019.2924192
- Wan, X., Wang, Z., Wu, M., Liu, X., 10.1109/tnnls.2018.2839020, IEEE Trans. Neural Networks Learning Systems 30 (2019), 2, 415-426. MR3914858DOI10.1109/tnnls.2018.2839020
- Wang, D., Wang, Z., Li, G., Wang, W., 10.1109/jsen.2016.2555761, IEEE Sensors J. 16 (2016), 12, 4940-4948. DOI10.1109/jsen.2016.2555761
- Wang, D., Wang, Z., Shen, B., Li, Q., 10.1002/rnc.4479, Int. J. Robust Nonlinear Control 29 (2019), 2096-2111. MR3940107DOI10.1002/rnc.4479
- Wang, L., Wang, Z., Han, Q.-L., Wei, G., 10.1109/tcyb.2017.2671032, IEEE Trans. Cybernet. 48 (2018), 3, 1007-1017. MR1988100DOI10.1109/tcyb.2017.2671032
- Wang, T., Qiu, J., Fu, S., Ji, W., 10.1109/tie.2016.2622234, IEEE Trans. Industr. Electron. 64 (2017), 6, 5203-5211. DOI10.1109/tie.2016.2622234
- Wang, X.-L., Yang, G.-H., 10.1109/tsmc.2018.2882540, IEEE Trans. Systems Man Cybernet.: Systems. DOI10.1109/tsmc.2018.2882540
- Wen, C., Wang, Z., Liu, Q., Alsaadi, F. E., 10.1109/tsmc.2016.2629464, IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 6, 930-941. DOI10.1109/tsmc.2016.2629464
- Xiao, S., Han, Q.-L., Ge, X., Zhang, Y., 10.1109/tcyb.2019.2900478, IEEE Trans. Cybernet. 50 (2020), 3, 1220-1229. DOI10.1109/tcyb.2019.2900478
- Xu, Y., Lu, R., Shi, P., Li, H., Xie, S., 10.1109/tcyb.2016.2635122, IEEE Trans. Cybernet. 48 (2018), 1, 336-345. DOI10.1109/tcyb.2016.2635122
- Yan, H., Yang, Q., Zhang, H., Yang, F., Zhan, X., 10.1109/tsmc.2017.2708507, IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 12, 2047-2057. DOI10.1109/tsmc.2017.2708507
- Yan, H., Zhang, H., Yang, F., Huang, C., Chen, S., 10.1109/tsmc.2017.2754495, IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 12, 2263-2270. DOI10.1109/tsmc.2017.2754495
- Yang, F., Han, Q.-L., Liu, Y., 10.1109/tcyb.2017.2789212, IEEE Trans. Cybernet. 49 (2019), 3, 870-882. DOI10.1109/tcyb.2017.2789212
- Yang, F., Xia, N., Han, Q.-L., 10.1109/tii.2016.2607999, IEEE Trans. Industr. Inform. 13 (2017), 1, 322-329. DOI10.1109/tii.2016.2607999
- Yang, W., Wang, X. F., Shi, H. B., 10.1080/00207721.2011.565135, Int. J. Systems Sci. 42 (2011), 9, 1521-1529. MR2819529DOI10.1080/00207721.2011.565135
- Yin, X., Li, Z., Zhang, L., Han, M., 10.1109/tsmc.2016.2632155, IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 6, 864-874. DOI10.1109/tsmc.2016.2632155
- Yu, H., Zhuang, Y., Wang, W., 10.1016/j.ins.2012.07.059, Inform. Sci. 222 (2013), 424-438. MR2998522DOI10.1016/j.ins.2012.07.059
- Yu, W., Deng, Z., Zhou, H., Zeng, X., 10.14736/kyb-2017-5-0747, Kybernetika 53 (2017), 5, 747-764. MR3750101DOI10.14736/kyb-2017-5-0747
- Yu, Y., Shen, Y., 10.14736/kyb-2018-4-0699, Kybernetika 54 (2018), 4, 699-717. MR3863251DOI10.14736/kyb-2018-4-0699
- Zhang, D., Shi, P., Zhang, W.-A., Yu, L., 10.1109/tcyb.2016.2553043, IEEE Trans. Cybernet. 46 (2017), 7, 1618-1629. MR3537173DOI10.1109/tcyb.2016.2553043
- Zhang, D., Yu, L., Zhang, W.-A., 10.1109/jsen.2014.2386348, IEEE Sensors J. 15 (2015), 5, 3026-3036. DOI10.1109/jsen.2014.2386348
- Zhang, H., Hong, Q., Yan, H., Yang, F., Guo, G., 10.1109/tii.2016.2569566, IEEE Trans. Industr. Inform. 13 (2017), 1, 312-321. DOI10.1109/tii.2016.2569566
- Zhang, H., Wang, Z., Yan, H., Yang, F., Zhou, X., 10.1109/tcyb.2018.2862828, IEEE Trans. Cybernet. 49 (2019), 12, 4296-4307. MR3957647DOI10.1109/tcyb.2018.2862828
- Zhang, L., Ning, Z., Wang, Z., 10.1109/tsmc.2015.2435700, IEEE Trans. Systems Man Cybernet.: Systems 46 (2016), 6, 559-572. DOI10.1109/tsmc.2015.2435700
- Zhang, P., Wang, J., 10.14736/kyb-2016-4-0589, Kybernetika 52 (2016), 4, 589-606. MR3565771DOI10.14736/kyb-2016-4-0589
- Zhang, W.-A., Dong, H., Guo, G., Yu, L., 10.1109/tii.2014.2299897, IEEE Trans. Industr. Inform. 10 (2014), 2, 871-881. DOI10.1109/tii.2014.2299897
- Zhang, X.-M., Han, Q.-L., 10.1109/tnnls.2017.2661862, IEEE Trans. Neural Networks Learning Syst. 313 (2018), 29, 1376-1381. MR3867869DOI10.1109/tnnls.2017.2661862
- Zhang, X.-M., Han, Q.-L., Ge, X., Ding, D., 10.1016/j.neucom.2018.06.038, Neurocomputing 313 (2018), 392-401. DOI10.1016/j.neucom.2018.06.038
- Zhang, X.-M., Han, Q.-L., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C., 10.1109/jas.2019.1911651, IEEE/CAA J. Automat. Sinica 7 (2020), 1, 1-17. MR3841465DOI10.1109/jas.2019.1911651
- Zhang, X.-M., Han, Q.-L., Seuret, A., Gouaisbaut, F., He, Y., 10.1049/iet-cta.2018.5188, IET Control Theory Appl. 13 (2019), 1, 1-16. MR3888201DOI10.1049/iet-cta.2018.5188
- Zhang, X.-M., Han, Q.-L., Ge, X., 10.1109/jas.2020.1003111, IEEE/CAA J. Automat. Sinica. DOI10.1109/jas.2020.1003111
- Zhu, S., Chen, C., Li, W., Yang, B., Guan, X., 10.1109/tsmcb.2012.2236647, IEEE Trans. Cybernet. 43 (2013), 6, 1963-1976. DOI10.1109/tsmcb.2012.2236647
- Zhu, Y., Zhang, L., Zheng, W., 10.1109/tie.2015.2499169, IEEE Trans. Industr. Electron. 63 (2016), 3, 1876-1885. DOI10.1109/tie.2015.2499169
- Zou, L., Wang, Z., Han, Q.-L., Zhou, D., 10.1109/tac.2017.2713353, IEEE Trans. Automat. Control 62 (2017), 12, 6582-6588. MR3743543DOI10.1109/tac.2017.2713353
- Zou, L., Wang, Z., Han, Q.-L., Zhou, D., 10.1109/tac.2017.2713353, IEEE Trans. Automat. Control 64 (2019), 2, 720-727. MR3912120DOI10.1109/tac.2017.2713353
- Zou, L., Wang, Z., Han, Q.-L., Zhou, D., 10.1109/tac.2019.2910167, IEEE Trans. Automat. Control 64 (2019), 12, 5191-5198. MR4044317DOI10.1109/tac.2019.2910167
- Zou, L., Wang, Z., Han, Q.-L., Zhou, D., 10.1109/tac.2018.2833154, IEEE Trans. Systems Man Cybernet.: Systems. DOI10.1109/tac.2018.2833154
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.