Polynomials and degrees of maps in real normed algebras
Communications in Mathematics (2020)
- Volume: 28, Issue: 1, page 43-54
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topSakkalis, Takis. "Polynomials and degrees of maps in real normed algebras." Communications in Mathematics 28.1 (2020): 43-54. <http://eudml.org/doc/297148>.
@article{Sakkalis2020,
abstract = {Let $\mathcal \{A\}$ be the algebra of quaternions $\mathbb \{H\}$ or octonions $\mathbb \{O\}$. In this manuscript an elementary proof is given, based on ideas of Cauchy and D’Alembert, of the fact that an ordinary polynomial $f(t) \in \mathcal \{A\} [t]$ has a root in $\mathcal \{A\}$. As a consequence, the Jacobian determinant $\vert J(f)\vert $ is always non-negative in $\mathcal \{A\}$. Moreover, using the idea of the topological degree we show that a regular polynomial $g(t)$ over $\mathcal \{A\}$ has also a root in $\mathcal \{A\}$. Finally, utilizing multiplication ($*$) in $\mathcal \{A\}$, we prove various results on the topological degree of products of maps. In particular, if $S$ is the unit sphere in $\mathcal \{A\}$ and $h_1, h_2\colon S \rightarrow S$ are smooth maps, it is shown that $\deg (h_1 * h_2)=\deg (h_1) + \deg (h_2)$.},
author = {Sakkalis, Takis},
journal = {Communications in Mathematics},
keywords = {ordinary polynomials; regular polynomials; Jacobians; degrees of maps},
language = {eng},
number = {1},
pages = {43-54},
publisher = {University of Ostrava},
title = {Polynomials and degrees of maps in real normed algebras},
url = {http://eudml.org/doc/297148},
volume = {28},
year = {2020},
}
TY - JOUR
AU - Sakkalis, Takis
TI - Polynomials and degrees of maps in real normed algebras
JO - Communications in Mathematics
PY - 2020
PB - University of Ostrava
VL - 28
IS - 1
SP - 43
EP - 54
AB - Let $\mathcal {A}$ be the algebra of quaternions $\mathbb {H}$ or octonions $\mathbb {O}$. In this manuscript an elementary proof is given, based on ideas of Cauchy and D’Alembert, of the fact that an ordinary polynomial $f(t) \in \mathcal {A} [t]$ has a root in $\mathcal {A}$. As a consequence, the Jacobian determinant $\vert J(f)\vert $ is always non-negative in $\mathcal {A}$. Moreover, using the idea of the topological degree we show that a regular polynomial $g(t)$ over $\mathcal {A}$ has also a root in $\mathcal {A}$. Finally, utilizing multiplication ($*$) in $\mathcal {A}$, we prove various results on the topological degree of products of maps. In particular, if $S$ is the unit sphere in $\mathcal {A}$ and $h_1, h_2\colon S \rightarrow S$ are smooth maps, it is shown that $\deg (h_1 * h_2)=\deg (h_1) + \deg (h_2)$.
LA - eng
KW - ordinary polynomials; regular polynomials; Jacobians; degrees of maps
UR - http://eudml.org/doc/297148
ER -
References
top- Baez, J.C., 10.1090/S0273-0979-01-00934-X, Bull. Amer. Math. Soc., 39, 2002, 145-205, (2002) MR1886087DOI10.1090/S0273-0979-01-00934-X
- Bourbaki, N., General Topology, Part 2, 1966, Hermann, Paris, (1966) MR0141067
- Eilenberg, S., Niven, I., 10.1090/S0002-9904-1944-08125-1, Bull. Amer. Math. Soc., 50, 4, 1944, 246-248, (1944) MR0009588DOI10.1090/S0002-9904-1944-08125-1
- Gentili, G., Struppa, D.C., 10.1007/s00032-008-0093-0, Milan J. Math., 76, 1, 2008, 15-25, (2008) MR2465984DOI10.1007/s00032-008-0093-0
- Gentili, G., Struppa, D.C., Vlacci, F., 10.1007/s00209-007-0254-9, Mathematische Zeitschrift, 259, 4, 2008, 895-902, Springer, (2008) MR2403747DOI10.1007/s00209-007-0254-9
- Gordon, B., Motzkin, T.S., 10.1090/S0002-9947-1965-0195853-2, Transactions of the American Mathematical Society, 116, 1965, 218-226, JSTOR, (1965) MR0195853DOI10.1090/S0002-9947-1965-0195853-2
- Milnor, J., Weaver, D.W., Topology from the differentiable viewpoint, 1997, Princeton University Press, (1997) MR1487640
- Rodríguez-Ordóñez, H., 10.1016/j.exmath.2007.02.005, Expositiones Mathematicae, 25, 4, 2007, 355-361, Elsevier, (2007) MR2360922DOI10.1016/j.exmath.2007.02.005
- Topuridze, N., 10.1515/GMJ.2003.745, Georgian Math. Journal, 10, 4, 2003, 745-762, Walter de Gruyter, (2003) MR2037774DOI10.1515/GMJ.2003.745
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.