Structure of geodesics in weakly symmetric Finsler metrics on H-type groups
Archivum Mathematicum (2020)
- Volume: 056, Issue: 5, page 265-275
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topDušek, Zdeněk. "Structure of geodesics in weakly symmetric Finsler metrics on H-type groups." Archivum Mathematicum 056.5 (2020): 265-275. <http://eudml.org/doc/297157>.
@article{Dušek2020,
abstract = {Structure of geodesic graphs in special families of invariant weakly symmetric Finsler metrics on modified H-type groups is investigated. Geodesic graphs on modified H-type groups with the center of dimension $1$ or $2$ are constructed. The new patterns of algebraic complexity of geodesic graphs are observed.},
author = {Dušek, Zdeněk},
journal = {Archivum Mathematicum},
keywords = {Finsler space; weakly symmetric space; g.o. space; homogeneous geodesic; geodesic graph},
language = {eng},
number = {5},
pages = {265-275},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Structure of geodesics in weakly symmetric Finsler metrics on H-type groups},
url = {http://eudml.org/doc/297157},
volume = {056},
year = {2020},
}
TY - JOUR
AU - Dušek, Zdeněk
TI - Structure of geodesics in weakly symmetric Finsler metrics on H-type groups
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 5
SP - 265
EP - 275
AB - Structure of geodesic graphs in special families of invariant weakly symmetric Finsler metrics on modified H-type groups is investigated. Geodesic graphs on modified H-type groups with the center of dimension $1$ or $2$ are constructed. The new patterns of algebraic complexity of geodesic graphs are observed.
LA - eng
KW - Finsler space; weakly symmetric space; g.o. space; homogeneous geodesic; geodesic graph
UR - http://eudml.org/doc/297157
ER -
References
top- Alekseevsky, D., Arvanitoyeorgos, A., 10.1090/S0002-9947-07-04277-8, Trans. Amer. Math. Soc. 359 (2007), 3769–3789. (2007) Zbl1148.53038MR2302514DOI10.1090/S0002-9947-07-04277-8
- Bao, D., Chern, S.-S., Shen, Z., An Introduction to Riemann-Finsler Geometry, Springer Science+Business Media, New York, 2000. (2000) Zbl0954.53001MR1747675
- Berndt, J., Kowalski, O., Vanhecke, L., 10.1023/A:1006565909527, Ann. Glob. Anal. Geom. 15 (1997), 153–156. (1997) MR1448722DOI10.1023/A:1006565909527
- Berndt, J., Tricerri, F., Vanhecke, L., Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Math., vol. 1598, Springer-Verlag, Berlin-Heidelberg-New York, 1995. (1995) MR1340192
- Deng, S., Homogeneous Finsler Spaces, Springer Science+Business Media, New York, 2012. (2012) MR2962626
- Dušek, Z., Explicit geodesic graphs on some H-type groups, Rend. Circ. Mat. Palermo, Serie II, Suppl. 69 (2002), 77–88. (2002) MR1972426
- Dušek, Z., Structure of geodesics in the flag manifold , Differential Geometry and its Applications, Proc. 10th Int. Conf. (Kowalski, O., Krupka, D., Krupková, O., Slovák, J., eds.), World Scientific, 2008, pp. 89–98. (2008) MR2463742
- Dušek, Z., Homogeneous geodesics and g.o. manifolds, Note Mat. 38 (2018), 1–15. (2018) MR3809649
- Dušek, Z., Geodesic graphs in Randers g.o. spaces, Comment. Math. Univ. Carolin. 61 (2) (2020), 195–211. (2020) MR4143705
- Dušek, Z., Kowalski, O., 10.1002/mana.200310054, Math. Nachr. 254–255 (2003), 87–96. (2003) MR1983957DOI10.1002/mana.200310054
- Gordon, C.S., Nikonorov, Yu.G., 10.1016/j.geomphys.2018.08.018, J. Geom. Phys. 134 (2018), 235–243. (2018) MR3886938DOI10.1016/j.geomphys.2018.08.018
- Kowalski, O., Nikčević, S., 10.1007/s000130050032, Arch. Math. 73 (1999), 223–234, Appendix: Arch. Math. 79 (2002), 158–160. (1999) MR1924152DOI10.1007/s000130050032
- Kowalski, O., Vanhecke, L., Riemannian manifolds with homogeneous geodesics, Boll. Un. Math. Ital. B(7) 5 (1991), 189–246. (1991) Zbl0731.53046MR1110676
- Latifi, D., 10.1016/j.geomphys.2006.11.004, J. Geom. Phys. 57 (2007), 1421–1433. (2007) MR2289656DOI10.1016/j.geomphys.2006.11.004
- Lauret, J., 10.1016/S0926-2245(99)00002-9, Differential Geom. Appl. 10 (1999), 121–143. (1999) MR1669469DOI10.1016/S0926-2245(99)00002-9
- Riehm, C., Explicit spin representations and Lie algebras of Heisenberg type, J. London Math. Soc. (2) 32 (1985), 265–271. (1985) MR0734990
- Szenthe, J., Sur la connection naturelle à torsion nulle, Acta Sci. Math. (Szeged) 38 (1976), 383–398. (1976) MR0431042
- Yan, Z., Deng, S., 10.1016/j.difgeo.2014.06.006, Differential Geom. Appl. 36 (2014), 1–23. (2014) MR3262894DOI10.1016/j.difgeo.2014.06.006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.