Structure of geodesics in weakly symmetric Finsler metrics on H-type groups

Zdeněk Dušek

Archivum Mathematicum (2020)

  • Volume: 056, Issue: 5, page 265-275
  • ISSN: 0044-8753

Abstract

top
Structure of geodesic graphs in special families of invariant weakly symmetric Finsler metrics on modified H-type groups is investigated. Geodesic graphs on modified H-type groups with the center of dimension or are constructed. The new patterns of algebraic complexity of geodesic graphs are observed.

How to cite

top

Dušek, Zdeněk. "Structure of geodesics in weakly symmetric Finsler metrics on H-type groups." Archivum Mathematicum 056.5 (2020): 265-275. <http://eudml.org/doc/297157>.

@article{Dušek2020,
abstract = {Structure of geodesic graphs in special families of invariant weakly symmetric Finsler metrics on modified H-type groups is investigated. Geodesic graphs on modified H-type groups with the center of dimension $1$ or $2$ are constructed. The new patterns of algebraic complexity of geodesic graphs are observed.},
author = {Dušek, Zdeněk},
journal = {Archivum Mathematicum},
keywords = {Finsler space; weakly symmetric space; g.o. space; homogeneous geodesic; geodesic graph},
language = {eng},
number = {5},
pages = {265-275},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Structure of geodesics in weakly symmetric Finsler metrics on H-type groups},
url = {http://eudml.org/doc/297157},
volume = {056},
year = {2020},
}

TY - JOUR
AU - Dušek, Zdeněk
TI - Structure of geodesics in weakly symmetric Finsler metrics on H-type groups
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 5
SP - 265
EP - 275
AB - Structure of geodesic graphs in special families of invariant weakly symmetric Finsler metrics on modified H-type groups is investigated. Geodesic graphs on modified H-type groups with the center of dimension $1$ or $2$ are constructed. The new patterns of algebraic complexity of geodesic graphs are observed.
LA - eng
KW - Finsler space; weakly symmetric space; g.o. space; homogeneous geodesic; geodesic graph
UR - http://eudml.org/doc/297157
ER -

References

top
  1. Alekseevsky, D., Arvanitoyeorgos, A., 10.1090/S0002-9947-07-04277-8, Trans. Amer. Math. Soc. 359 (2007), 3769–3789. (2007) Zbl1148.53038MR2302514DOI10.1090/S0002-9947-07-04277-8
  2. Bao, D., Chern, S.-S., Shen, Z., An Introduction to Riemann-Finsler Geometry, Springer Science+Business Media, New York, 2000. (2000) Zbl0954.53001MR1747675
  3. Berndt, J., Kowalski, O., Vanhecke, L., 10.1023/A:1006565909527, Ann. Glob. Anal. Geom. 15 (1997), 153–156. (1997) MR1448722DOI10.1023/A:1006565909527
  4. Berndt, J., Tricerri, F., Vanhecke, L., Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Math., vol. 1598, Springer-Verlag, Berlin-Heidelberg-New York, 1995. (1995) MR1340192
  5. Deng, S., Homogeneous Finsler Spaces, Springer Science+Business Media, New York, 2012. (2012) MR2962626
  6. Dušek, Z., Explicit geodesic graphs on some H-type groups, Rend. Circ. Mat. Palermo, Serie II, Suppl. 69 (2002), 77–88. (2002) MR1972426
  7. Dušek, Z., Structure of geodesics in the flag manifold , Differential Geometry and its Applications, Proc. 10th Int. Conf. (Kowalski, O., Krupka, D., Krupková, O., Slovák, J., eds.), World Scientific, 2008, pp. 89–98. (2008) MR2463742
  8. Dušek, Z., Homogeneous geodesics and g.o. manifolds, Note Mat. 38 (2018), 1–15. (2018) MR3809649
  9. Dušek, Z., Geodesic graphs in Randers g.o. spaces, Comment. Math. Univ. Carolin. 61 (2) (2020), 195–211. (2020) MR4143705
  10. Dušek, Z., Kowalski, O., 10.1002/mana.200310054, Math. Nachr. 254–255 (2003), 87–96. (2003) MR1983957DOI10.1002/mana.200310054
  11. Gordon, C.S., Nikonorov, Yu.G., 10.1016/j.geomphys.2018.08.018, J. Geom. Phys. 134 (2018), 235–243. (2018) MR3886938DOI10.1016/j.geomphys.2018.08.018
  12. Kowalski, O., Nikčević, S., 10.1007/s000130050032, Arch. Math. 73 (1999), 223–234, Appendix: Arch. Math. 79 (2002), 158–160. (1999) MR1924152DOI10.1007/s000130050032
  13. Kowalski, O., Vanhecke, L., Riemannian manifolds with homogeneous geodesics, Boll. Un. Math. Ital. B(7) 5 (1991), 189–246. (1991) Zbl0731.53046MR1110676
  14. Latifi, D., 10.1016/j.geomphys.2006.11.004, J. Geom. Phys. 57 (2007), 1421–1433. (2007) MR2289656DOI10.1016/j.geomphys.2006.11.004
  15. Lauret, J., 10.1016/S0926-2245(99)00002-9, Differential Geom. Appl. 10 (1999), 121–143. (1999) MR1669469DOI10.1016/S0926-2245(99)00002-9
  16. Riehm, C., Explicit spin representations and Lie algebras of Heisenberg type, J. London Math. Soc. (2) 32 (1985), 265–271. (1985) MR0734990
  17. Szenthe, J., Sur la connection naturelle à torsion nulle, Acta Sci. Math. (Szeged) 38 (1976), 383–398. (1976) MR0431042
  18. Yan, Z., Deng, S., 10.1016/j.difgeo.2014.06.006, Differential Geom. Appl. 36 (2014), 1–23. (2014) MR3262894DOI10.1016/j.difgeo.2014.06.006

NotesEmbed ?

top

You must be logged in to post comments.