Geodesic graphs in Randers g.o. spaces

Zdeněk Dušek

Commentationes Mathematicae Universitatis Carolinae (2020)

  • Volume: 61, Issue: 2, page 195-211
  • ISSN: 0010-2628

Abstract

top
The concept of geodesic graph is generalized from Riemannian geometry to Finsler geometry, in particular to homogeneous Randers g.o. manifolds. On modified H-type groups which admit a Riemannian g.o. metric, invariant Randers g.o. metrics are determined and geodesic graphs in these Finsler g.o. manifolds are constructed. New structures of geodesic graphs are observed.

How to cite

top

Dušek, Zdeněk. "Geodesic graphs in Randers g.o. spaces." Commentationes Mathematicae Universitatis Carolinae 61.2 (2020): 195-211. <http://eudml.org/doc/297173>.

@article{Dušek2020,
abstract = {The concept of geodesic graph is generalized from Riemannian geometry to Finsler geometry, in particular to homogeneous Randers g.o. manifolds. On modified H-type groups which admit a Riemannian g.o. metric, invariant Randers g.o. metrics are determined and geodesic graphs in these Finsler g.o. manifolds are constructed. New structures of geodesic graphs are observed.},
author = {Dušek, Zdeněk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Finsler space; Randers space; homogeneous geodesic; geodesic graph; g.o. space},
language = {eng},
number = {2},
pages = {195-211},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Geodesic graphs in Randers g.o. spaces},
url = {http://eudml.org/doc/297173},
volume = {61},
year = {2020},
}

TY - JOUR
AU - Dušek, Zdeněk
TI - Geodesic graphs in Randers g.o. spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 2
SP - 195
EP - 211
AB - The concept of geodesic graph is generalized from Riemannian geometry to Finsler geometry, in particular to homogeneous Randers g.o. manifolds. On modified H-type groups which admit a Riemannian g.o. metric, invariant Randers g.o. metrics are determined and geodesic graphs in these Finsler g.o. manifolds are constructed. New structures of geodesic graphs are observed.
LA - eng
KW - Finsler space; Randers space; homogeneous geodesic; geodesic graph; g.o. space
UR - http://eudml.org/doc/297173
ER -

References

top
  1. Alekseevsky D., Arvanitoyeorgos A., Riemannian flag manifolds with homogeneous geodesics, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3769–3789. MR2302514
  2. Bao D., Chern S.-S., Shen Z., 10.1007/978-1-4612-1268-3, Graduate Texts in Mathematics, 200, Springer, New York, 2000. MR1747675DOI10.1007/978-1-4612-1268-3
  3. Berndt J., Tricerri F., Vanhecke L., Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces, Lecture Notes in Mathematics, 1598, Springer, Berlin, 1995. MR1340192
  4. Deng S., Homogeneous Finsler Spaces, Springer Monographs in Mathematics, Springer, New York, 2012. MR2962626
  5. Dušek Z., Explicit geodesic graphs on some H-type groups, Proc. of the 21st Winter School Geometry and Physics, Srní, 2001, Rend. Circ. Mat. Palermo (2) Suppl. (2002), no. 69, 77–88. Zbl1025.53019MR1972426
  6. Dušek Z., 10.1142/9789812790613_0009, Differential Geometry and Its Applications, World Sci. Publ., Hackensack, 2008, 89–98. MR2462785DOI10.1142/9789812790613_0009
  7. Dušek Z., Homogeneous geodesics and g.o. manifolds, Note Mat. 38 (2018), no. 1, 1–15. MR3809649
  8. Dušek Z., Kowalski O., 10.1002/mana.200310054, Math. Nachr. 254/255 (2003), 87–96. MR1983957DOI10.1002/mana.200310054
  9. Gordon C. S., Nikonorov Yu. G., 10.1016/j.geomphys.2018.08.018, J. Geom. Phys. 134 (2018), 235–243. MR3886938DOI10.1016/j.geomphys.2018.08.018
  10. Kowalski O., Nikčević S., 10.1007/s000130050032, Arch. Math. (Basel) 73 (1999), no. 3, 223–234; Appendix: Arch. Math. (Basel) 79 (2002), no. 2, 158–160. MR1924152DOI10.1007/s000130050032
  11. Kowalski O., Vanhecke L., Riemannian manifolds with homogeneous geodesics, Boll. Un. Math. Ital. B(7) 5 (1991), no. 1, 189–246. MR1110676
  12. Latifi D., 10.1016/j.geomphys.2006.11.004, J. Geom. Phys. 57 (2007), no. 5, 1421–1433. MR2289656DOI10.1016/j.geomphys.2006.11.004
  13. Lauret J., 10.1016/S0926-2245(99)00002-9, Differential Geom. Appl. 10 (1999), no. 2, 121–143. MR1669469DOI10.1016/S0926-2245(99)00002-9
  14. Nikonorov Yu. G., 10.1007/s10455-017-9558-0, Ann. Global Anal. Geom. 52 (2017), no. 3, 289–311. MR3711602DOI10.1007/s10455-017-9558-0
  15. Parhizkar M., Latifi D., Geodesic vectors of Randers metrics on nilpotent Lie groups of dimension five, Glob. J. Adv. Res. Class. Mod. Geom. 7 (2018), no. 2, 92–101. MR3861222
  16. Riehm C., 10.1112/jlms/s2-29.1.49, J. London Math. Soc. (2) 29 (1984), no. 1, 49–62. MR0734990DOI10.1112/jlms/s2-29.1.49
  17. Szenthe J., Sur la connection naturelle à torsion nulle, Acta Sci. Math. (Szeged) 38 (1976), no. 3–4, 383–398 (French). MR0431042
  18. Yan Z., Deng S., 10.1016/j.difgeo.2014.06.006, Differential Geom. Appl. 36 (2014), 1–23. MR3262894DOI10.1016/j.difgeo.2014.06.006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.