Geodesic graphs in Randers g.o. spaces
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 2, page 195-211
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDušek, Zdeněk. "Geodesic graphs in Randers g.o. spaces." Commentationes Mathematicae Universitatis Carolinae 61.2 (2020): 195-211. <http://eudml.org/doc/297173>.
@article{Dušek2020,
abstract = {The concept of geodesic graph is generalized from Riemannian geometry to Finsler geometry, in particular to homogeneous Randers g.o. manifolds. On modified H-type groups which admit a Riemannian g.o. metric, invariant Randers g.o. metrics are determined and geodesic graphs in these Finsler g.o. manifolds are constructed. New structures of geodesic graphs are observed.},
author = {Dušek, Zdeněk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Finsler space; Randers space; homogeneous geodesic; geodesic graph; g.o. space},
language = {eng},
number = {2},
pages = {195-211},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Geodesic graphs in Randers g.o. spaces},
url = {http://eudml.org/doc/297173},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Dušek, Zdeněk
TI - Geodesic graphs in Randers g.o. spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 2
SP - 195
EP - 211
AB - The concept of geodesic graph is generalized from Riemannian geometry to Finsler geometry, in particular to homogeneous Randers g.o. manifolds. On modified H-type groups which admit a Riemannian g.o. metric, invariant Randers g.o. metrics are determined and geodesic graphs in these Finsler g.o. manifolds are constructed. New structures of geodesic graphs are observed.
LA - eng
KW - Finsler space; Randers space; homogeneous geodesic; geodesic graph; g.o. space
UR - http://eudml.org/doc/297173
ER -
References
top- Alekseevsky D., Arvanitoyeorgos A., Riemannian flag manifolds with homogeneous geodesics, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3769–3789. MR2302514
- Bao D., Chern S.-S., Shen Z., 10.1007/978-1-4612-1268-3, Graduate Texts in Mathematics, 200, Springer, New York, 2000. MR1747675DOI10.1007/978-1-4612-1268-3
- Berndt J., Tricerri F., Vanhecke L., Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces, Lecture Notes in Mathematics, 1598, Springer, Berlin, 1995. MR1340192
- Deng S., Homogeneous Finsler Spaces, Springer Monographs in Mathematics, Springer, New York, 2012. MR2962626
- Dušek Z., Explicit geodesic graphs on some H-type groups, Proc. of the 21st Winter School Geometry and Physics, Srní, 2001, Rend. Circ. Mat. Palermo (2) Suppl. (2002), no. 69, 77–88. Zbl1025.53019MR1972426
- Dušek Z., 10.1142/9789812790613_0009, Differential Geometry and Its Applications, World Sci. Publ., Hackensack, 2008, 89–98. MR2462785DOI10.1142/9789812790613_0009
- Dušek Z., Homogeneous geodesics and g.o. manifolds, Note Mat. 38 (2018), no. 1, 1–15. MR3809649
- Dušek Z., Kowalski O., 10.1002/mana.200310054, Math. Nachr. 254/255 (2003), 87–96. MR1983957DOI10.1002/mana.200310054
- Gordon C. S., Nikonorov Yu. G., 10.1016/j.geomphys.2018.08.018, J. Geom. Phys. 134 (2018), 235–243. MR3886938DOI10.1016/j.geomphys.2018.08.018
- Kowalski O., Nikčević S., 10.1007/s000130050032, Arch. Math. (Basel) 73 (1999), no. 3, 223–234; Appendix: Arch. Math. (Basel) 79 (2002), no. 2, 158–160. MR1924152DOI10.1007/s000130050032
- Kowalski O., Vanhecke L., Riemannian manifolds with homogeneous geodesics, Boll. Un. Math. Ital. B(7) 5 (1991), no. 1, 189–246. MR1110676
- Latifi D., 10.1016/j.geomphys.2006.11.004, J. Geom. Phys. 57 (2007), no. 5, 1421–1433. MR2289656DOI10.1016/j.geomphys.2006.11.004
- Lauret J., 10.1016/S0926-2245(99)00002-9, Differential Geom. Appl. 10 (1999), no. 2, 121–143. MR1669469DOI10.1016/S0926-2245(99)00002-9
- Nikonorov Yu. G., 10.1007/s10455-017-9558-0, Ann. Global Anal. Geom. 52 (2017), no. 3, 289–311. MR3711602DOI10.1007/s10455-017-9558-0
- Parhizkar M., Latifi D., Geodesic vectors of Randers metrics on nilpotent Lie groups of dimension five, Glob. J. Adv. Res. Class. Mod. Geom. 7 (2018), no. 2, 92–101. MR3861222
- Riehm C., 10.1112/jlms/s2-29.1.49, J. London Math. Soc. (2) 29 (1984), no. 1, 49–62. MR0734990DOI10.1112/jlms/s2-29.1.49
- Szenthe J., Sur la connection naturelle à torsion nulle, Acta Sci. Math. (Szeged) 38 (1976), no. 3–4, 383–398 (French). MR0431042
- Yan Z., Deng S., 10.1016/j.difgeo.2014.06.006, Differential Geom. Appl. 36 (2014), 1–23. MR3262894DOI10.1016/j.difgeo.2014.06.006
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.