The Collatz-Wielandt quotient for pairs of nonnegative operators

Shmuel Friedland

Applications of Mathematics (2020)

  • Volume: 65, Issue: 5, page 557-597
  • ISSN: 0862-7940

Abstract

top
In this paper we consider two versions of the Collatz-Wielandt quotient for a pair of nonnegative operators A , B that map a given pointed generating cone in the first space into a given pointed generating cone in the second space. If the two spaces and two cones are identical, and B is the identity operator, then one version of this quotient is the spectral radius of A . In some applications, as commodity pricing, power control in wireless networks and quantum information theory, one needs to deal with the Collatz-Wielandt quotient for two nonnegative operators. In this paper we treat the two important cases: a pair of rectangular nonnegative matrices and a pair of completely positive operators. We give a characterization of minimal optimal solutions and polynomially computable bounds on the Collatz-Wielandt quotient.

How to cite

top

Friedland, Shmuel. "The Collatz-Wielandt quotient for pairs of nonnegative operators." Applications of Mathematics 65.5 (2020): 557-597. <http://eudml.org/doc/297197>.

@article{Friedland2020,
abstract = {In this paper we consider two versions of the Collatz-Wielandt quotient for a pair of nonnegative operators $A,B$ that map a given pointed generating cone in the first space into a given pointed generating cone in the second space. If the two spaces and two cones are identical, and $B$ is the identity operator, then one version of this quotient is the spectral radius of $A$. In some applications, as commodity pricing, power control in wireless networks and quantum information theory, one needs to deal with the Collatz-Wielandt quotient for two nonnegative operators. In this paper we treat the two important cases: a pair of rectangular nonnegative matrices and a pair of completely positive operators. We give a characterization of minimal optimal solutions and polynomially computable bounds on the Collatz-Wielandt quotient.},
author = {Friedland, Shmuel},
journal = {Applications of Mathematics},
keywords = {Perron-Frobenius theory; Collatz-Wielandt quotient; completely positive operator; commodity pricing; wireless network; quantum information theory},
language = {eng},
number = {5},
pages = {557-597},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Collatz-Wielandt quotient for pairs of nonnegative operators},
url = {http://eudml.org/doc/297197},
volume = {65},
year = {2020},
}

TY - JOUR
AU - Friedland, Shmuel
TI - The Collatz-Wielandt quotient for pairs of nonnegative operators
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 5
SP - 557
EP - 597
AB - In this paper we consider two versions of the Collatz-Wielandt quotient for a pair of nonnegative operators $A,B$ that map a given pointed generating cone in the first space into a given pointed generating cone in the second space. If the two spaces and two cones are identical, and $B$ is the identity operator, then one version of this quotient is the spectral radius of $A$. In some applications, as commodity pricing, power control in wireless networks and quantum information theory, one needs to deal with the Collatz-Wielandt quotient for two nonnegative operators. In this paper we treat the two important cases: a pair of rectangular nonnegative matrices and a pair of completely positive operators. We give a characterization of minimal optimal solutions and polynomially computable bounds on the Collatz-Wielandt quotient.
LA - eng
KW - Perron-Frobenius theory; Collatz-Wielandt quotient; completely positive operator; commodity pricing; wireless network; quantum information theory
UR - http://eudml.org/doc/297197
ER -

References

top
  1. Avin, C., Borokhovich, M., Haddad, Y., Kantor, E., Lotker, Z., Parter, M., Peleg, D., 10.1137/1.9781611973105.35, Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013 SIAM, Philadelphia (2013), 478-497. (2013) Zbl1422.90013MR3186769DOI10.1137/1.9781611973105.35
  2. Avin, C., Borokhovich, M., Haddad, Y., Kantor, E., Lotker, Z., Parter, M., Peleg, D., Generalized Perron-Frobenius theorem for nonsquare matrices, Available at https://arxiv.org/abs/1308.5915 (2013), 55 pages. (2013) MR3186769
  3. Berman, A., Plemmons, R. J., 10.1137/1.9781611971262, Computer Science and Applied Mathematics. Academic Press, New York (1979). (1979) Zbl0484.15016MR0544666DOI10.1137/1.9781611971262
  4. Boutry, G., Elad, M., Golub, G. H., Milanfar, P., 10.1137/S0895479803428795, SIAM J. Matrix Anal. Appl. 27 (2005), 582-601. (2005) Zbl1100.65035MR2179690DOI10.1137/S0895479803428795
  5. Boyd, S., Vandenberghe, L., 10.1017/CBO9780511804441, Cambridge University Press, New York (2004). (2004) Zbl1058.90049MR2061575DOI10.1017/CBO9780511804441
  6. Choi, M.-D., 10.1016/0024-3795(75)90075-0, Linear Algebra Appl. 10 (1975), 285-290. (1975) Zbl0327.15018MR0376726DOI10.1016/0024-3795(75)90075-0
  7. Chu, D., Golub, G. H., 10.1137/050628258, SIAM J. Matrix Anal. Appl. 28 (2006), 770-787. (2006) Zbl1128.15004MR2262980DOI10.1137/050628258
  8. Collatz, L., 10.1007/BF01180013, Math. Z. 48 (1942), 221-226 German. (1942) Zbl0027.00604MR0008590DOI10.1007/BF01180013
  9. Erdelyi, I., 10.1016/0022-247X(67)90169-2, J. Math. Anal. Appl. 17 (1967), 119-132. (1967) Zbl0153.04902MR0202734DOI10.1016/0022-247X(67)90169-2
  10. Friedland, S., 10.1016/0024-3795(90)90008-Z, Linear Algebra Appl. 134 (1990), 93-105. (1990) Zbl0707.15005MR1060012DOI10.1016/0024-3795(90)90008-Z
  11. Friedland, S., 10.1016/0022-1236(91)90016-X, J. Funct. Anal. 97 (1991), 64-70. (1991) Zbl0745.47024MR1105655DOI10.1016/0022-1236(91)90016-X
  12. Friedland, S., 10.1142/9567, World Scientific, Hackensack (2016). (2016) Zbl1337.15002MR3467205DOI10.1142/9567
  13. Friedland, S., Loewy, R., 10.1016/j.laa.2016.02.001, Linear Algebra Appl. 498 (2016), 553-573. (2016) Zbl1334.15086MR3478578DOI10.1016/j.laa.2016.02.001
  14. Frobenius, G. F., Über Matrizen aus positiven Elementen, Berl. Ber. 1908 (1908), 471-476 German 9999JFM99999 39.0213.03. (1908) 
  15. Frobenius, G. F., Über Matrizen aus positiven Elementen II, Berl. Ber. 1909 (1909), 514-518 German 9999JFM99999 40.0202.02. (1909) 
  16. Frobenius, G. F., Über Matrizen aus nicht negativen Elementen, Berl. Ber. 1912 (1912), 456-477 German 9999JFM99999 43.0204.09. (1912) 
  17. Gantmacher, F. R., The Theory of Matrices. Vol. 1, Chelsea Publishing, New York (1959). (1959) Zbl0927.15001MR0107649
  18. Gantmacher, F. R., The Theory of Matrices. Vol. 2, Chelsea Publishing, New York (1959). (1959) Zbl0927.15002MR0107649
  19. Golub, G. H., Loan, C. F. Van, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2013). (2013) Zbl1268.65037MR3024913
  20. Grötschel, M., Lovász, L., Schrijver, A., 10.1007/978-3-642-97881-4, Algorithms and Combinatorics 2. Springer, Berlin (1988). (1988) Zbl0634.05001MR0936633DOI10.1007/978-3-642-97881-4
  21. Hastings, M. B., 10.1038/nphys1224, Nature Phys. 5 (2009), 255-257. (2009) DOI10.1038/nphys1224
  22. Holevo, A. S., 10.4171/022-3/49, Proceedings of the International Congress of Mathematicians (ICM). Vol. III European Mathematical Society, Zürich (2006), 999-1018. (2006) Zbl1100.94007MR2275716DOI10.4171/022-3/49
  23. Holevo, A. S., 10.1515/9783110273403, De Gruyter Studies in Mathematical Physics 16. De Gruyter, Berlin (2012). (2012) Zbl1332.81003MR2986302DOI10.1515/9783110273403
  24. Horn, R. A., Johnson, C. R., 10.1017/9781139020411, Cambridge University Press, Cambridge (2013). (2013) Zbl1267.15001MR2978290DOI10.1017/9781139020411
  25. Karlin, S., 10.1512/iumj.1959.8.58058, J. Math. Mech. 8 (1959), 905-937. (1959) Zbl0087.11002MR0114138DOI10.1512/iumj.1959.8.58058
  26. Kreĭn, M. G., Rutman, M. A., Linear operators leaving invariant cone in a Banach space, Usp. Mat. Nauk 3 (1948), 3-95 Russian. (1948) Zbl0030.12902MR0027128
  27. Lovász, L., 10.1137/1.9781611970203, CBMS-NSF Regional Conference Series in Applied Mathematics 50. SIAM, Philadelphia (1986). (1986) Zbl0606.68039MR0861822DOI10.1137/1.9781611970203
  28. Mangasarian, O. L., 10.1016/0022-247X(71)90020-5, J. Math. Anal. Appl. 36 (1971), 86-102. (1971) Zbl0224.15010MR0285555DOI10.1016/0022-247X(71)90020-5
  29. Mendl, C. B., Wolf, M. M., 10.1007/s00220-009-0824-2, Commun. Math. Phys. 289 (2009), 1057-1086. (2009) Zbl1167.81011MR2511660DOI10.1007/s00220-009-0824-2
  30. Meyer, C. D., 10.1137/1.9780898719512, SIAM, Philadelphia (2000). (2000) Zbl0962.15001MR1777382DOI10.1137/1.9780898719512
  31. Minc, H., Nonnegative Matrices, Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1988). (1988) Zbl0638.15008MR0932967
  32. Perron, O., 10.1007/BF01449896, Math. Ann. 64 (1907), 248-263 German 9999JFM99999 38.0202.01. (1907) MR1511438DOI10.1007/BF01449896
  33. Petz, D., 10.1007/978-3-540-74636-2, Theoretical and Mathematical Physics. Springer, Berlin (2008). (2008) Zbl1145.81002MR2363070DOI10.1007/978-3-540-74636-2
  34. Pillai, S. U., Suel, T., Cha, S., 10.1109/MSP.2005.1406483, IEEE Signal Process. Magazine 22 (2005), 62-75. (2005) DOI10.1109/MSP.2005.1406483
  35. Schaeffer, H. H., 10.1007/978-3-642-65970-6, Die Grundlehren der mathematischen Wissenschaften 215. Springer, Berlin (1974). (1974) Zbl0296.47023MR0423039DOI10.1007/978-3-642-65970-6
  36. Seneta, E., 10.1007/0-387-32792-4, Springer Series in Statistics. Springer, New York (1981). (1981) Zbl0471.60001MR0719544DOI10.1007/0-387-32792-4
  37. Shirokov, M. E., 10.1134/S0032946006040028, Probl. Inf. Transm. 42 (2006), 282-297 Translation from Probl. Peredachi Inf. 42 2006 23-40. (2006) Zbl1237.94039MR2278809DOI10.1134/S0032946006040028
  38. Shor, P. W., 10.1063/1.1498000, J. Math. Phys. 43 (2002), 4334-4340. (2002) Zbl1060.94004MR1924442DOI10.1063/1.1498000
  39. Srikant, R., 10.1007/978-0-8176-8216-3, Systems and Control: Foundations and Applications. Birkhäuser, Boston (2004). (2004) Zbl1086.68018MR2018967DOI10.1007/978-0-8176-8216-3
  40. Wielandt, H., 10.1007/BF02230720, Math. Z. 52 (1950), 642-648 German. (1950) Zbl0035.29101MR0035265DOI10.1007/BF02230720

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.