The Collatz-Wielandt quotient for pairs of nonnegative operators
Applications of Mathematics (2020)
- Volume: 65, Issue: 5, page 557-597
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFriedland, Shmuel. "The Collatz-Wielandt quotient for pairs of nonnegative operators." Applications of Mathematics 65.5 (2020): 557-597. <http://eudml.org/doc/297197>.
@article{Friedland2020,
abstract = {In this paper we consider two versions of the Collatz-Wielandt quotient for a pair of nonnegative operators $A,B$ that map a given pointed generating cone in the first space into a given pointed generating cone in the second space. If the two spaces and two cones are identical, and $B$ is the identity operator, then one version of this quotient is the spectral radius of $A$. In some applications, as commodity pricing, power control in wireless networks and quantum information theory, one needs to deal with the Collatz-Wielandt quotient for two nonnegative operators. In this paper we treat the two important cases: a pair of rectangular nonnegative matrices and a pair of completely positive operators. We give a characterization of minimal optimal solutions and polynomially computable bounds on the Collatz-Wielandt quotient.},
author = {Friedland, Shmuel},
journal = {Applications of Mathematics},
keywords = {Perron-Frobenius theory; Collatz-Wielandt quotient; completely positive operator; commodity pricing; wireless network; quantum information theory},
language = {eng},
number = {5},
pages = {557-597},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Collatz-Wielandt quotient for pairs of nonnegative operators},
url = {http://eudml.org/doc/297197},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Friedland, Shmuel
TI - The Collatz-Wielandt quotient for pairs of nonnegative operators
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 5
SP - 557
EP - 597
AB - In this paper we consider two versions of the Collatz-Wielandt quotient for a pair of nonnegative operators $A,B$ that map a given pointed generating cone in the first space into a given pointed generating cone in the second space. If the two spaces and two cones are identical, and $B$ is the identity operator, then one version of this quotient is the spectral radius of $A$. In some applications, as commodity pricing, power control in wireless networks and quantum information theory, one needs to deal with the Collatz-Wielandt quotient for two nonnegative operators. In this paper we treat the two important cases: a pair of rectangular nonnegative matrices and a pair of completely positive operators. We give a characterization of minimal optimal solutions and polynomially computable bounds on the Collatz-Wielandt quotient.
LA - eng
KW - Perron-Frobenius theory; Collatz-Wielandt quotient; completely positive operator; commodity pricing; wireless network; quantum information theory
UR - http://eudml.org/doc/297197
ER -
References
top- Avin, C., Borokhovich, M., Haddad, Y., Kantor, E., Lotker, Z., Parter, M., Peleg, D., 10.1137/1.9781611973105.35, Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013 SIAM, Philadelphia (2013), 478-497. (2013) Zbl1422.90013MR3186769DOI10.1137/1.9781611973105.35
- Avin, C., Borokhovich, M., Haddad, Y., Kantor, E., Lotker, Z., Parter, M., Peleg, D., Generalized Perron-Frobenius theorem for nonsquare matrices, Available at https://arxiv.org/abs/1308.5915 (2013), 55 pages. (2013) MR3186769
- Berman, A., Plemmons, R. J., 10.1137/1.9781611971262, Computer Science and Applied Mathematics. Academic Press, New York (1979). (1979) Zbl0484.15016MR0544666DOI10.1137/1.9781611971262
- Boutry, G., Elad, M., Golub, G. H., Milanfar, P., 10.1137/S0895479803428795, SIAM J. Matrix Anal. Appl. 27 (2005), 582-601. (2005) Zbl1100.65035MR2179690DOI10.1137/S0895479803428795
- Boyd, S., Vandenberghe, L., 10.1017/CBO9780511804441, Cambridge University Press, New York (2004). (2004) Zbl1058.90049MR2061575DOI10.1017/CBO9780511804441
- Choi, M.-D., 10.1016/0024-3795(75)90075-0, Linear Algebra Appl. 10 (1975), 285-290. (1975) Zbl0327.15018MR0376726DOI10.1016/0024-3795(75)90075-0
- Chu, D., Golub, G. H., 10.1137/050628258, SIAM J. Matrix Anal. Appl. 28 (2006), 770-787. (2006) Zbl1128.15004MR2262980DOI10.1137/050628258
- Collatz, L., 10.1007/BF01180013, Math. Z. 48 (1942), 221-226 German. (1942) Zbl0027.00604MR0008590DOI10.1007/BF01180013
- Erdelyi, I., 10.1016/0022-247X(67)90169-2, J. Math. Anal. Appl. 17 (1967), 119-132. (1967) Zbl0153.04902MR0202734DOI10.1016/0022-247X(67)90169-2
- Friedland, S., 10.1016/0024-3795(90)90008-Z, Linear Algebra Appl. 134 (1990), 93-105. (1990) Zbl0707.15005MR1060012DOI10.1016/0024-3795(90)90008-Z
- Friedland, S., 10.1016/0022-1236(91)90016-X, J. Funct. Anal. 97 (1991), 64-70. (1991) Zbl0745.47024MR1105655DOI10.1016/0022-1236(91)90016-X
- Friedland, S., 10.1142/9567, World Scientific, Hackensack (2016). (2016) Zbl1337.15002MR3467205DOI10.1142/9567
- Friedland, S., Loewy, R., 10.1016/j.laa.2016.02.001, Linear Algebra Appl. 498 (2016), 553-573. (2016) Zbl1334.15086MR3478578DOI10.1016/j.laa.2016.02.001
- Frobenius, G. F., Über Matrizen aus positiven Elementen, Berl. Ber. 1908 (1908), 471-476 German 9999JFM99999 39.0213.03. (1908)
- Frobenius, G. F., Über Matrizen aus positiven Elementen II, Berl. Ber. 1909 (1909), 514-518 German 9999JFM99999 40.0202.02. (1909)
- Frobenius, G. F., Über Matrizen aus nicht negativen Elementen, Berl. Ber. 1912 (1912), 456-477 German 9999JFM99999 43.0204.09. (1912)
- Gantmacher, F. R., The Theory of Matrices. Vol. 1, Chelsea Publishing, New York (1959). (1959) Zbl0927.15001MR0107649
- Gantmacher, F. R., The Theory of Matrices. Vol. 2, Chelsea Publishing, New York (1959). (1959) Zbl0927.15002MR0107649
- Golub, G. H., Loan, C. F. Van, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2013). (2013) Zbl1268.65037MR3024913
- Grötschel, M., Lovász, L., Schrijver, A., 10.1007/978-3-642-97881-4, Algorithms and Combinatorics 2. Springer, Berlin (1988). (1988) Zbl0634.05001MR0936633DOI10.1007/978-3-642-97881-4
- Hastings, M. B., 10.1038/nphys1224, Nature Phys. 5 (2009), 255-257. (2009) DOI10.1038/nphys1224
- Holevo, A. S., 10.4171/022-3/49, Proceedings of the International Congress of Mathematicians (ICM). Vol. III European Mathematical Society, Zürich (2006), 999-1018. (2006) Zbl1100.94007MR2275716DOI10.4171/022-3/49
- Holevo, A. S., 10.1515/9783110273403, De Gruyter Studies in Mathematical Physics 16. De Gruyter, Berlin (2012). (2012) Zbl1332.81003MR2986302DOI10.1515/9783110273403
- Horn, R. A., Johnson, C. R., 10.1017/9781139020411, Cambridge University Press, Cambridge (2013). (2013) Zbl1267.15001MR2978290DOI10.1017/9781139020411
- Karlin, S., 10.1512/iumj.1959.8.58058, J. Math. Mech. 8 (1959), 905-937. (1959) Zbl0087.11002MR0114138DOI10.1512/iumj.1959.8.58058
- Kreĭn, M. G., Rutman, M. A., Linear operators leaving invariant cone in a Banach space, Usp. Mat. Nauk 3 (1948), 3-95 Russian. (1948) Zbl0030.12902MR0027128
- Lovász, L., 10.1137/1.9781611970203, CBMS-NSF Regional Conference Series in Applied Mathematics 50. SIAM, Philadelphia (1986). (1986) Zbl0606.68039MR0861822DOI10.1137/1.9781611970203
- Mangasarian, O. L., 10.1016/0022-247X(71)90020-5, J. Math. Anal. Appl. 36 (1971), 86-102. (1971) Zbl0224.15010MR0285555DOI10.1016/0022-247X(71)90020-5
- Mendl, C. B., Wolf, M. M., 10.1007/s00220-009-0824-2, Commun. Math. Phys. 289 (2009), 1057-1086. (2009) Zbl1167.81011MR2511660DOI10.1007/s00220-009-0824-2
- Meyer, C. D., 10.1137/1.9780898719512, SIAM, Philadelphia (2000). (2000) Zbl0962.15001MR1777382DOI10.1137/1.9780898719512
- Minc, H., Nonnegative Matrices, Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1988). (1988) Zbl0638.15008MR0932967
- Perron, O., 10.1007/BF01449896, Math. Ann. 64 (1907), 248-263 German 9999JFM99999 38.0202.01. (1907) MR1511438DOI10.1007/BF01449896
- Petz, D., 10.1007/978-3-540-74636-2, Theoretical and Mathematical Physics. Springer, Berlin (2008). (2008) Zbl1145.81002MR2363070DOI10.1007/978-3-540-74636-2
- Pillai, S. U., Suel, T., Cha, S., 10.1109/MSP.2005.1406483, IEEE Signal Process. Magazine 22 (2005), 62-75. (2005) DOI10.1109/MSP.2005.1406483
- Schaeffer, H. H., 10.1007/978-3-642-65970-6, Die Grundlehren der mathematischen Wissenschaften 215. Springer, Berlin (1974). (1974) Zbl0296.47023MR0423039DOI10.1007/978-3-642-65970-6
- Seneta, E., 10.1007/0-387-32792-4, Springer Series in Statistics. Springer, New York (1981). (1981) Zbl0471.60001MR0719544DOI10.1007/0-387-32792-4
- Shirokov, M. E., 10.1134/S0032946006040028, Probl. Inf. Transm. 42 (2006), 282-297 Translation from Probl. Peredachi Inf. 42 2006 23-40. (2006) Zbl1237.94039MR2278809DOI10.1134/S0032946006040028
- Shor, P. W., 10.1063/1.1498000, J. Math. Phys. 43 (2002), 4334-4340. (2002) Zbl1060.94004MR1924442DOI10.1063/1.1498000
- Srikant, R., 10.1007/978-0-8176-8216-3, Systems and Control: Foundations and Applications. Birkhäuser, Boston (2004). (2004) Zbl1086.68018MR2018967DOI10.1007/978-0-8176-8216-3
- Wielandt, H., 10.1007/BF02230720, Math. Z. 52 (1950), 642-648 German. (1950) Zbl0035.29101MR0035265DOI10.1007/BF02230720
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.