Observer based control for strong practical stabilization of a class of uncertain time delay systems
Kybernetika (2019)
- Volume: 55, Issue: 6, page 1016-1033
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topNadhem, Echi, and Benabdallah, Amel. "Observer based control for strong practical stabilization of a class of uncertain time delay systems." Kybernetika 55.6 (2019): 1016-1033. <http://eudml.org/doc/297209>.
@article{Nadhem2019,
abstract = {In this paper, we address the strong practical stabilization problem for a class of uncertain time delay systems with a nominal part written in triangular form. We propose, firstly, a strong practical observer. Then, we show that strong practical stability of the closed loop system with a linear, parameter dependent, state feedback is achieved. Finally, a separation principle is established, that is, we implement the control law with estimate states given by the strong practical observer and we prove that the closed loop system is strong practical stable. With the help of a numerical example, effectiveness of the proposed approach is demonstrated.},
author = {Nadhem, Echi, Benabdallah, Amel},
journal = {Kybernetika},
keywords = {observer; exponential stability; strong practical stability; time delay; Lyapunov--Krasovskii},
language = {eng},
number = {6},
pages = {1016-1033},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Observer based control for strong practical stabilization of a class of uncertain time delay systems},
url = {http://eudml.org/doc/297209},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Nadhem, Echi
AU - Benabdallah, Amel
TI - Observer based control for strong practical stabilization of a class of uncertain time delay systems
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 6
SP - 1016
EP - 1033
AB - In this paper, we address the strong practical stabilization problem for a class of uncertain time delay systems with a nominal part written in triangular form. We propose, firstly, a strong practical observer. Then, we show that strong practical stability of the closed loop system with a linear, parameter dependent, state feedback is achieved. Finally, a separation principle is established, that is, we implement the control law with estimate states given by the strong practical observer and we prove that the closed loop system is strong practical stable. With the help of a numerical example, effectiveness of the proposed approach is demonstrated.
LA - eng
KW - observer; exponential stability; strong practical stability; time delay; Lyapunov--Krasovskii
UR - http://eudml.org/doc/297209
ER -
References
top- J., Anthonis,, A., Seuret,, J.-.P., Richard,, H., Ramon,, Design of a pressure control system with band time delay
- A., Atassi,, K., Khalil, H., 10.1109/9.788534, IEEE Trans. Automat. Control 44 (1999), 1672-1687. Zbl0958.93079MR1709863DOI10.1109/9.788534
- A., Atassi,, K., Khalil, H., 10.1016/S0167-6911(99)00085-7, Systems Control Lett. 39 (2000), 183-191. Zbl0948.93007MR1831258DOI10.1016/S0167-6911(99)00085-7
- A., Benabdallah,, 10.14736/kyb-2015-1-0099, Kybernetika 51 ( 2015 ), 99-111. MR3333835DOI10.14736/kyb-2015-1-0099
- A., Benabdallah,, N., Echi,, 10.1080/00207721.2015.1135356, Int. J. Systems Sci. 47 (2016), 3857-3863. MR3512589DOI10.1080/00207721.2015.1135356
- A., Benabdallah,, I., Ellouze,, A., Hammami, M., Practical exponential stability of perturbed triangular systems and separation principle
- A., Benabdallah,, I., Ellouze,, A., Hammami, M., Practical stability of nonlinear time-varying cascade systems
- A., Benabdallah,, T., Kharrat,, C., Vivalda, J., 10.14736/kyb-2015-1-0099, Systems Control Lett. 57 (2008), 371-377. MR2405104DOI10.14736/kyb-2015-1-0099
- Y., Dong,, X., Wang,, S., Mei,, W., Li,, 10.1007/s10665-012-9554-0, J. Engrg. Math. 77 (2012), 225-237. MR2990665DOI10.1007/s10665-012-9554-0
- N., Echi,, https://doi.org/10.1002/asjc.2271, Asian J. Control (2019). DOIhttps://doi.org/10.1002/asjc.2271
- N., Echi,, A., Benabdallah,, 10.1186/s13662-017-1335-7, Adv. Differ. Equ. 271 (2017), 1-13. MR3695397DOI10.1186/s13662-017-1335-7
- N., Echi,, B., Ghanmi,, 10.24425/acs.2019.129381, Arch. Control Sci. 29 (2019), 259-278. MR4033936DOI10.24425/acs.2019.129381
- B., Hamed,, I., Ellouze,, A., Hammami, M., 10.1007/s00009-010-0083-7, Mediterr. J. Math. 8 (2011), 603-616. MR2860688DOI10.1007/s00009-010-0083-7
- B., Hamed,, A., Hammami, M., 10.1007/s11768-009-8017-2, J. Control Theory Appl. 7 (2009), 175-180. MR2526947DOI10.1007/s11768-009-8017-2
- M., Farza,, A., Sboui,, E., Cherrier,, M., M'Saad,, 10.1080/00207170903141069, Int. J. Control 83 (2010), 273-280. MR2606182DOI10.1080/00207170903141069
- A., Germani,, C., Manes,, P., Pepe,, An asymptotic state observer for a class of nonlinear delay systems
- A., Germani,, C., Manes,, P., Pepe,, Local asymptotic stability for nonlinear state feedback delay systems., Kybernetika 36 (2000), 31-42. Zbl1249.93146MR1760886
- A., Germani,, C., Manes,, P., Pepe,, 10.1007/978-3-642-25221-1_25, Lect. Notes Control Inform. Sci. 423 (2012), 331-342. Zbl1298.93287MR3050770DOI10.1007/978-3-642-25221-1_25
- M., Ghanes,, De, Leon, J., J., Barbot,, 10.1109/TAC.2012.2225554, IEEE Trans. Automat. Control 58 (2013), 1529-1534. MR3065135DOI10.1109/TAC.2012.2225554
- K., Hale, J., V., Lunel, S. M., Introduction to Functional Differential Equations., Springer, New York 1993. Zbl0787.34002MR1243878
- S., Ibrir,, Observer-based control of a class of time-delay nonlinear systems having triangular structure
- X., Jia,, X., Chen,, S., Xu,, B., Zhang,, Z., Zhang,, 10.1109/TIE.2017.2668996, IEEE Trans. Ind. Electron. 64 (2017), 4792-4799. DOI10.1109/TIE.2017.2668996
- X., Jia,, S., Xu,, J., Chen,, Z., Li,, Y., Zou,, 10.1016/j.jfranklin.2015.08.012, J. Franklin Inst. 352 (2015), 5551-5568. MR3428380DOI10.1016/j.jfranklin.2015.08.012
- X., Jia,, S., Xu,, J., Lu,, Y., Li,, Y., Chu,, Z., Zhang,, Adaptive control for uncertain nonlinear time-delay systems in a lower-triangular form
- A., Koshkouei,, J., Burnham, K., 10.1080/00207720802439293, Int. J. Systems Sci. 40 (2009), 383-392. MR2510653DOI10.1080/00207720802439293
- M., Kwona, O., H., Parkb, J., Exponential stability of uncertain dynamic systems including state delay
- C., Lili,, Z., Ying,, Z., Xian,, 10.1016/j.neucom.2013.10.035, Neurocomputing 131 (2014), 105-112. DOI10.1016/j.neucom.2013.10.035
- S., Mondal,, K., Chung, W., Adaptive observer for a class of nonlinear systems with time-varying delays
- S., Mondie,, L., Kharitonov, V., 10.1016/j.jmaa.2014.12.019, IEEE Trans. Automat. Control 50 (2005), 268-273. MR2116437DOI10.1016/j.jmaa.2014.12.019
- Y., Muroya,, T., Kuniya,, L., Wang, J., doi, J. Math. Anal. Appl. 425 (2015), 415-439. MR3299671DOIdoi
- O., Naifar,, Ben, Makhlouf, A., A., Hammami, M., A., Ouali,, 10.1007/s00009-015-0659-3, Mediterr. J. Math. 13 (2016), 2841-2851. MR3554282DOI10.1007/s00009-015-0659-3
- P., Pepe,, I., Karafyllis,, 10.1080/00207179.2012.723137, Int. J. Control 86 (2013), 232-243. MR3017700DOI10.1080/00207179.2012.723137
- A., Rapaport,, L., Gouze, J., 10.1080/0020717031000067457, Int. J. Control 76 (2003), 237-251. MR1984076DOI10.1080/0020717031000067457
- R., Villafuerte,, S., Mondie,, A., Poznyak,, 10.3166/ejc.17.127-138, Eur. J. Control 2 (2011), 127-138. MR2839109DOI10.3166/ejc.17.127-138
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.