Observer based control for strong practical stabilization of a class of uncertain time delay systems

Echi Nadhem; Amel Benabdallah

Kybernetika (2019)

  • Volume: 55, Issue: 6, page 1016-1033
  • ISSN: 0023-5954

Abstract

top
In this paper, we address the strong practical stabilization problem for a class of uncertain time delay systems with a nominal part written in triangular form. We propose, firstly, a strong practical observer. Then, we show that strong practical stability of the closed loop system with a linear, parameter dependent, state feedback is achieved. Finally, a separation principle is established, that is, we implement the control law with estimate states given by the strong practical observer and we prove that the closed loop system is strong practical stable. With the help of a numerical example, effectiveness of the proposed approach is demonstrated.

How to cite

top

Nadhem, Echi, and Benabdallah, Amel. "Observer based control for strong practical stabilization of a class of uncertain time delay systems." Kybernetika 55.6 (2019): 1016-1033. <http://eudml.org/doc/297209>.

@article{Nadhem2019,
abstract = {In this paper, we address the strong practical stabilization problem for a class of uncertain time delay systems with a nominal part written in triangular form. We propose, firstly, a strong practical observer. Then, we show that strong practical stability of the closed loop system with a linear, parameter dependent, state feedback is achieved. Finally, a separation principle is established, that is, we implement the control law with estimate states given by the strong practical observer and we prove that the closed loop system is strong practical stable. With the help of a numerical example, effectiveness of the proposed approach is demonstrated.},
author = {Nadhem, Echi, Benabdallah, Amel},
journal = {Kybernetika},
keywords = {observer; exponential stability; strong practical stability; time delay; Lyapunov--Krasovskii},
language = {eng},
number = {6},
pages = {1016-1033},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Observer based control for strong practical stabilization of a class of uncertain time delay systems},
url = {http://eudml.org/doc/297209},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Nadhem, Echi
AU - Benabdallah, Amel
TI - Observer based control for strong practical stabilization of a class of uncertain time delay systems
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 6
SP - 1016
EP - 1033
AB - In this paper, we address the strong practical stabilization problem for a class of uncertain time delay systems with a nominal part written in triangular form. We propose, firstly, a strong practical observer. Then, we show that strong practical stability of the closed loop system with a linear, parameter dependent, state feedback is achieved. Finally, a separation principle is established, that is, we implement the control law with estimate states given by the strong practical observer and we prove that the closed loop system is strong practical stable. With the help of a numerical example, effectiveness of the proposed approach is demonstrated.
LA - eng
KW - observer; exponential stability; strong practical stability; time delay; Lyapunov--Krasovskii
UR - http://eudml.org/doc/297209
ER -

References

top
  1. J., Anthonis,, A., Seuret,, J.-.P., Richard,, H., Ramon,, Design of a pressure control system with band time delay 
  2. A., Atassi,, K., Khalil, H., 10.1109/9.788534, IEEE Trans. Automat. Control 44 (1999), 1672-1687. Zbl0958.93079MR1709863DOI10.1109/9.788534
  3. A., Atassi,, K., Khalil, H., 10.1016/S0167-6911(99)00085-7, Systems Control Lett. 39 (2000), 183-191. Zbl0948.93007MR1831258DOI10.1016/S0167-6911(99)00085-7
  4. A., Benabdallah,, 10.14736/kyb-2015-1-0099, Kybernetika 51 ( 2015 ), 99-111. MR3333835DOI10.14736/kyb-2015-1-0099
  5. A., Benabdallah,, N., Echi,, 10.1080/00207721.2015.1135356, Int. J. Systems Sci. 47 (2016), 3857-3863. MR3512589DOI10.1080/00207721.2015.1135356
  6. A., Benabdallah,, I., Ellouze,, A., Hammami, M., Practical exponential stability of perturbed triangular systems and separation principle 
  7. A., Benabdallah,, I., Ellouze,, A., Hammami, M., Practical stability of nonlinear time-varying cascade systems 
  8. A., Benabdallah,, T., Kharrat,, C., Vivalda, J., 10.14736/kyb-2015-1-0099, Systems Control Lett. 57 (2008), 371-377. MR2405104DOI10.14736/kyb-2015-1-0099
  9. Y., Dong,, X., Wang,, S., Mei,, W., Li,, 10.1007/s10665-012-9554-0, J. Engrg. Math. 77 (2012), 225-237. MR2990665DOI10.1007/s10665-012-9554-0
  10. N., Echi,, https://doi.org/10.1002/asjc.2271, Asian J. Control (2019). DOIhttps://doi.org/10.1002/asjc.2271
  11. N., Echi,, A., Benabdallah,, 10.1186/s13662-017-1335-7, Adv. Differ. Equ. 271 (2017), 1-13. MR3695397DOI10.1186/s13662-017-1335-7
  12. N., Echi,, B., Ghanmi,, 10.24425/acs.2019.129381, Arch. Control Sci. 29 (2019), 259-278. MR4033936DOI10.24425/acs.2019.129381
  13. B., Hamed,, I., Ellouze,, A., Hammami, M., 10.1007/s00009-010-0083-7, Mediterr. J. Math. 8 (2011), 603-616. MR2860688DOI10.1007/s00009-010-0083-7
  14. B., Hamed,, A., Hammami, M., 10.1007/s11768-009-8017-2, J. Control Theory Appl. 7 (2009), 175-180. MR2526947DOI10.1007/s11768-009-8017-2
  15. M., Farza,, A., Sboui,, E., Cherrier,, M., M'Saad,, 10.1080/00207170903141069, Int. J. Control 83 (2010), 273-280. MR2606182DOI10.1080/00207170903141069
  16. A., Germani,, C., Manes,, P., Pepe,, An asymptotic state observer for a class of nonlinear delay systems 
  17. A., Germani,, C., Manes,, P., Pepe,, Local asymptotic stability for nonlinear state feedback delay systems., Kybernetika 36 (2000), 31-42. Zbl1249.93146MR1760886
  18. A., Germani,, C., Manes,, P., Pepe,, 10.1007/978-3-642-25221-1_25, Lect. Notes Control Inform. Sci. 423 (2012), 331-342. Zbl1298.93287MR3050770DOI10.1007/978-3-642-25221-1_25
  19. M., Ghanes,, De, Leon, J., J., Barbot,, 10.1109/TAC.2012.2225554, IEEE Trans. Automat. Control 58 (2013), 1529-1534. MR3065135DOI10.1109/TAC.2012.2225554
  20. K., Hale, J., V., Lunel, S. M., Introduction to Functional Differential Equations., Springer, New York 1993. Zbl0787.34002MR1243878
  21. S., Ibrir,, Observer-based control of a class of time-delay nonlinear systems having triangular structure 
  22. X., Jia,, X., Chen,, S., Xu,, B., Zhang,, Z., Zhang,, 10.1109/TIE.2017.2668996, IEEE Trans. Ind. Electron. 64 (2017), 4792-4799. DOI10.1109/TIE.2017.2668996
  23. X., Jia,, S., Xu,, J., Chen,, Z., Li,, Y., Zou,, 10.1016/j.jfranklin.2015.08.012, J. Franklin Inst. 352 (2015), 5551-5568. MR3428380DOI10.1016/j.jfranklin.2015.08.012
  24. X., Jia,, S., Xu,, J., Lu,, Y., Li,, Y., Chu,, Z., Zhang,, Adaptive control for uncertain nonlinear time-delay systems in a lower-triangular form 
  25. A., Koshkouei,, J., Burnham, K., 10.1080/00207720802439293, Int. J. Systems Sci. 40 (2009), 383-392. MR2510653DOI10.1080/00207720802439293
  26. M., Kwona, O., H., Parkb, J., Exponential stability of uncertain dynamic systems including state delay 
  27. C., Lili,, Z., Ying,, Z., Xian,, 10.1016/j.neucom.2013.10.035, Neurocomputing 131 (2014), 105-112. DOI10.1016/j.neucom.2013.10.035
  28. S., Mondal,, K., Chung, W., Adaptive observer for a class of nonlinear systems with time-varying delays 
  29. S., Mondie,, L., Kharitonov, V., 10.1016/j.jmaa.2014.12.019, IEEE Trans. Automat. Control 50 (2005), 268-273. MR2116437DOI10.1016/j.jmaa.2014.12.019
  30. Y., Muroya,, T., Kuniya,, L., Wang, J., doi, J. Math. Anal. Appl. 425 (2015), 415-439. MR3299671DOIdoi
  31. O., Naifar,, Ben, Makhlouf, A., A., Hammami, M., A., Ouali,, 10.1007/s00009-015-0659-3, Mediterr. J. Math. 13 (2016), 2841-2851. MR3554282DOI10.1007/s00009-015-0659-3
  32. P., Pepe,, I., Karafyllis,, 10.1080/00207179.2012.723137, Int. J. Control 86 (2013), 232-243. MR3017700DOI10.1080/00207179.2012.723137
  33. A., Rapaport,, L., Gouze, J., 10.1080/0020717031000067457, Int. J. Control 76 (2003), 237-251. MR1984076DOI10.1080/0020717031000067457
  34. R., Villafuerte,, S., Mondie,, A., Poznyak,, 10.3166/ejc.17.127-138, Eur. J. Control 2 (2011), 127-138. MR2839109DOI10.3166/ejc.17.127-138

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.