A separation principle for the stabilization of a class of time delay nonlinear systems
Kybernetika (2015)
- Volume: 51, Issue: 1, page 99-111
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBenabdallah, Amel. "A separation principle for the stabilization of a class of time delay nonlinear systems." Kybernetika 51.1 (2015): 99-111. <http://eudml.org/doc/270043>.
@article{Benabdallah2015,
abstract = {In this paper, we establish a separation principle for a class of time-delay nonlinear systems satisfying some relaxed triangular-type condition. Under delay independent conditions, we propose a nonlinear time-delay observer to estimate the system states, a state feedback controller and we prove that the observer-based controller stabilizes the system.},
author = {Benabdallah, Amel},
journal = {Kybernetika},
keywords = {delay system; output feedback stabilization; nonlinear observer; separation principle; delay system; output feedback stabilization; nonlinear observer; separation principle},
language = {eng},
number = {1},
pages = {99-111},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A separation principle for the stabilization of a class of time delay nonlinear systems},
url = {http://eudml.org/doc/270043},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Benabdallah, Amel
TI - A separation principle for the stabilization of a class of time delay nonlinear systems
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 1
SP - 99
EP - 111
AB - In this paper, we establish a separation principle for a class of time-delay nonlinear systems satisfying some relaxed triangular-type condition. Under delay independent conditions, we propose a nonlinear time-delay observer to estimate the system states, a state feedback controller and we prove that the observer-based controller stabilizes the system.
LA - eng
KW - delay system; output feedback stabilization; nonlinear observer; separation principle; delay system; output feedback stabilization; nonlinear observer; separation principle
UR - http://eudml.org/doc/270043
ER -
References
top- Atassi, A. N., Khalil, H. K., 10.1109/9.788534, IEEE Trans. Automat. Control 44 (1999), 1672-1687. Zbl0958.93079MR1709863DOI10.1109/9.788534
- Atassi, A. N., Khalil, H. K., 10.1016/s0167-6911(99)00085-7, Systems Control Lett. 39 (2000), 183-191. Zbl0948.93007MR1831258DOI10.1016/s0167-6911(99)00085-7
- Boyd, S., Ghaoui, L. El, Feron, E., Balakrishnan, V., 10.1137/1.9781611970777, In: SIAM Stud. Appl. Math. 15 (1994). MR1284712DOI10.1137/1.9781611970777
- Choi, H. L., Lim, J. T., 10.1109/tac.2004.841886, IEEE Trans. Automat. Control 50 (2005), 2, 255-257. MR2116434DOI10.1109/tac.2004.841886
- Germani, A., Manes, C., Pepe, P., Local asymptotic stability for nonlinear state feedback delay systems., Kybernetika 36 (2000), 31-42. Zbl1249.93146MR1760886
- Germani, A., Manes, C., Pepe, P., An asymptotic state observer for a class of nonlinear delay systems., Kybernetika 37 (2001), 459-478. Zbl1265.93029MR1859096
- Germani, A., Manes, C., Pepe, P., 10.1002/rnc.853, Int. J. Robust Nonlinear Control 13 (2003), 909-937. Zbl1039.93008MR1998320DOI10.1002/rnc.853
- Germani, A., Manes, C., Pepe, P., 10.3182/20100607-3-cz-4010.00006, In: IFAC-Papers OnLine, Workshop on Time-Delay Systems, Praha 2010. DOI10.3182/20100607-3-cz-4010.00006
- Germani, A., Manes, C., Pepe, P., 10.1007/978-3-642-25221-1_25, Lect. Notes Control Inform. Sci. 423 (2012), 331-342. Zbl1298.93287MR3050770DOI10.1007/978-3-642-25221-1_25
- Hale, J. K., Lunel, S. M., 10.1007/978-1-4612-4342-7, Springer-Verlag, New York 1991. DOI10.1007/978-1-4612-4342-7
- Ibrir, S., 10.1016/j.automatica.2010.10.052, Automatica 47 (2011), 388-394. Zbl1207.93015MR2878289DOI10.1016/j.automatica.2010.10.052
- Jankovic, M., 10.1016/j.automatica.2010.01.021, Automatica 46 (2010), 510-517. Zbl1194.93077MR2877101DOI10.1016/j.automatica.2010.01.021
- Khalil, H. K., 10.1002/rnc.1054, Prentice-Hall, Upper Saddle River, NJ 2001. Zbl1194.93083DOI10.1002/rnc.1054
- Kwon, O. M., Park, J. H., Lee, S. M., Won, S. C., 10.1007/s10957-005-7560-3, J. Optim. Theory Appl. 128 (2006), 103-117. Zbl1121.93025MR2201891DOI10.1007/s10957-005-7560-3
- Li, X., Souza, C. de, 10.1007/BFb0027489, Lect. Notes Control Inform. Sci. (1998), 241-258. MR1482581DOI10.1007/BFb0027489
- Marquez, L. A., Moog, C., Villa, M. Velasco, Observability and observers for nonlinear systems with time delay., Kybernetika 38 (2002), 445-456. MR1937139
- Pepe, P., Karafyllis, I., 10.1080/00207179.2012.723137, Int. J. Control 86 (2013), 232-243. Zbl1278.93219MR3017700DOI10.1080/00207179.2012.723137
- Qian, C., W.Lin, 10.1109/tac.2002.803542, IEEE Trans. Automat. Control 47 (2002), 1710-1715. MR1929946DOI10.1109/tac.2002.803542
- Sun, Y. J., 10.1016/s0024-3795(02)00292-6, Linear Algebra Appl. 353 (2002), 91-105. MR1918750DOI10.1016/s0024-3795(02)00292-6
- Thuan, M. V., Phat, V. N., Trinh, H., 10.2478/v10006-012-0068-8, Int. J. Appl. Math. Comput. Sci. 22 (2012), 4, 921-927. Zbl1283.93057MR3059771DOI10.2478/v10006-012-0068-8
- Tsinias, J., 10.1016/0167-6911(91)90135-2, Systems Control Lett. 17 (1991), 357-362. Zbl0749.93071MR1136537DOI10.1016/0167-6911(91)90135-2
- Wang, Z., Goodall, D. P., Burnham, K. J., 10.1080/00207170210126245, Int. J. Control 75 (2002), 803-811. Zbl1027.93007MR1924004DOI10.1080/00207170210126245
- Zhang, X., and, Z. Cheng, Wang, X. P., 10.1109/acc.2005.1470769, In: Proc. American Control Conference, Portland 2005, pp. 4486-4490. DOI10.1109/acc.2005.1470769
- Zhou, L., Xiao, X., Lu, G., 10.1002/asjc.150, Asian J. Control 11 (2009), 6, 688-693. MR2791315DOI10.1002/asjc.150
Citations in EuDML Documents
top- Echi Nadhem, Amel Benabdallah, Observer based control for strong practical stabilization of a class of uncertain time delay systems
- Branislav Rehák, Sum-of-squares based observer design for polynomial systems with a known fixed time delay
- Hanen Benali, Global output feedback stabilization for nonlinear fractional order time delay systems
- Lingchun Li, Guangming Zhang, Meiying Ou, Yujie Wang, sliding mode control for Markov jump systems with interval time-varying delays and general transition probabilities
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.