A separation principle for the stabilization of a class of time delay nonlinear systems

Amel Benabdallah

Kybernetika (2015)

  • Volume: 51, Issue: 1, page 99-111
  • ISSN: 0023-5954

Abstract

top
In this paper, we establish a separation principle for a class of time-delay nonlinear systems satisfying some relaxed triangular-type condition. Under delay independent conditions, we propose a nonlinear time-delay observer to estimate the system states, a state feedback controller and we prove that the observer-based controller stabilizes the system.

How to cite

top

Benabdallah, Amel. "A separation principle for the stabilization of a class of time delay nonlinear systems." Kybernetika 51.1 (2015): 99-111. <http://eudml.org/doc/270043>.

@article{Benabdallah2015,
abstract = {In this paper, we establish a separation principle for a class of time-delay nonlinear systems satisfying some relaxed triangular-type condition. Under delay independent conditions, we propose a nonlinear time-delay observer to estimate the system states, a state feedback controller and we prove that the observer-based controller stabilizes the system.},
author = {Benabdallah, Amel},
journal = {Kybernetika},
keywords = {delay system; output feedback stabilization; nonlinear observer; separation principle; delay system; output feedback stabilization; nonlinear observer; separation principle},
language = {eng},
number = {1},
pages = {99-111},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A separation principle for the stabilization of a class of time delay nonlinear systems},
url = {http://eudml.org/doc/270043},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Benabdallah, Amel
TI - A separation principle for the stabilization of a class of time delay nonlinear systems
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 1
SP - 99
EP - 111
AB - In this paper, we establish a separation principle for a class of time-delay nonlinear systems satisfying some relaxed triangular-type condition. Under delay independent conditions, we propose a nonlinear time-delay observer to estimate the system states, a state feedback controller and we prove that the observer-based controller stabilizes the system.
LA - eng
KW - delay system; output feedback stabilization; nonlinear observer; separation principle; delay system; output feedback stabilization; nonlinear observer; separation principle
UR - http://eudml.org/doc/270043
ER -

References

top
  1. Atassi, A. N., Khalil, H. K., 10.1109/9.788534, IEEE Trans. Automat. Control 44 (1999), 1672-1687. Zbl0958.93079MR1709863DOI10.1109/9.788534
  2. Atassi, A. N., Khalil, H. K., 10.1016/s0167-6911(99)00085-7, Systems Control Lett. 39 (2000), 183-191. Zbl0948.93007MR1831258DOI10.1016/s0167-6911(99)00085-7
  3. Boyd, S., Ghaoui, L. El, Feron, E., Balakrishnan, V., 10.1137/1.9781611970777, In: SIAM Stud. Appl. Math. 15 (1994). MR1284712DOI10.1137/1.9781611970777
  4. Choi, H. L., Lim, J. T., 10.1109/tac.2004.841886, IEEE Trans. Automat. Control 50 (2005), 2, 255-257. MR2116434DOI10.1109/tac.2004.841886
  5. Germani, A., Manes, C., Pepe, P., Local asymptotic stability for nonlinear state feedback delay systems., Kybernetika 36 (2000), 31-42. Zbl1249.93146MR1760886
  6. Germani, A., Manes, C., Pepe, P., An asymptotic state observer for a class of nonlinear delay systems., Kybernetika 37 (2001), 459-478. Zbl1265.93029MR1859096
  7. Germani, A., Manes, C., Pepe, P., 10.1002/rnc.853, Int. J. Robust Nonlinear Control 13 (2003), 909-937. Zbl1039.93008MR1998320DOI10.1002/rnc.853
  8. Germani, A., Manes, C., Pepe, P., 10.3182/20100607-3-cz-4010.00006, In: IFAC-Papers OnLine, Workshop on Time-Delay Systems, Praha 2010. DOI10.3182/20100607-3-cz-4010.00006
  9. Germani, A., Manes, C., Pepe, P., 10.1007/978-3-642-25221-1_25, Lect. Notes Control Inform. Sci. 423 (2012), 331-342. Zbl1298.93287MR3050770DOI10.1007/978-3-642-25221-1_25
  10. Hale, J. K., Lunel, S. M., 10.1007/978-1-4612-4342-7, Springer-Verlag, New York 1991. DOI10.1007/978-1-4612-4342-7
  11. Ibrir, S., 10.1016/j.automatica.2010.10.052, Automatica 47 (2011), 388-394. Zbl1207.93015MR2878289DOI10.1016/j.automatica.2010.10.052
  12. Jankovic, M., 10.1016/j.automatica.2010.01.021, Automatica 46 (2010), 510-517. Zbl1194.93077MR2877101DOI10.1016/j.automatica.2010.01.021
  13. Khalil, H. K., 10.1002/rnc.1054, Prentice-Hall, Upper Saddle River, NJ 2001. Zbl1194.93083DOI10.1002/rnc.1054
  14. Kwon, O. M., Park, J. H., Lee, S. M., Won, S. C., 10.1007/s10957-005-7560-3, J. Optim. Theory Appl. 128 (2006), 103-117. Zbl1121.93025MR2201891DOI10.1007/s10957-005-7560-3
  15. Li, X., Souza, C. de, 10.1007/BFb0027489, Lect. Notes Control Inform. Sci. (1998), 241-258. MR1482581DOI10.1007/BFb0027489
  16. Marquez, L. A., Moog, C., Villa, M. Velasco, Observability and observers for nonlinear systems with time delay., Kybernetika 38 (2002), 445-456. MR1937139
  17. Pepe, P., Karafyllis, I., 10.1080/00207179.2012.723137, Int. J. Control 86 (2013), 232-243. Zbl1278.93219MR3017700DOI10.1080/00207179.2012.723137
  18. Qian, C., W.Lin, 10.1109/tac.2002.803542, IEEE Trans. Automat. Control 47 (2002), 1710-1715. MR1929946DOI10.1109/tac.2002.803542
  19. Sun, Y. J., 10.1016/s0024-3795(02)00292-6, Linear Algebra Appl. 353 (2002), 91-105. MR1918750DOI10.1016/s0024-3795(02)00292-6
  20. Thuan, M. V., Phat, V. N., Trinh, H., 10.2478/v10006-012-0068-8, Int. J. Appl. Math. Comput. Sci. 22 (2012), 4, 921-927. Zbl1283.93057MR3059771DOI10.2478/v10006-012-0068-8
  21. Tsinias, J., 10.1016/0167-6911(91)90135-2, Systems Control Lett. 17 (1991), 357-362. Zbl0749.93071MR1136537DOI10.1016/0167-6911(91)90135-2
  22. Wang, Z., Goodall, D. P., Burnham, K. J., 10.1080/00207170210126245, Int. J. Control 75 (2002), 803-811. Zbl1027.93007MR1924004DOI10.1080/00207170210126245
  23. Zhang, X., and, Z. Cheng, Wang, X. P., 10.1109/acc.2005.1470769, In: Proc. American Control Conference, Portland 2005, pp. 4486-4490. DOI10.1109/acc.2005.1470769
  24. Zhou, L., Xiao, X., Lu, G., 10.1002/asjc.150, Asian J. Control 11 (2009), 6, 688-693. MR2791315DOI10.1002/asjc.150

Citations in EuDML Documents

top
  1. Echi Nadhem, Amel Benabdallah, Observer based control for strong practical stabilization of a class of uncertain time delay systems
  2. Branislav Rehák, Sum-of-squares based observer design for polynomial systems with a known fixed time delay
  3. Hanen Benali, Global output feedback stabilization for nonlinear fractional order time delay systems
  4. Lingchun Li, Guangming Zhang, Meiying Ou, Yujie Wang, H sliding mode control for Markov jump systems with interval time-varying delays and general transition probabilities

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.