Global output feedback stabilization for nonlinear fractional order time delay systems

Hanen Benali

Kybernetika (2021)

  • Volume: 57, Issue: 5, page 785-800
  • ISSN: 0023-5954

Abstract

top
This paper investigates the problem of global stabilization by state and output-feedback for a family of for nonlinear Riemann-Liouville and Caputo fractional order time delay systems written in triangular form satisfying linear growth conditions. By constructing a appropriate Lyapunov-Krasovskii functional, global asymptotic stability of the closed-loop systems is achieved. Moreover, sufficient conditions for the stability, for the particular class of fractional order time-delay system are obtained. Finally, simulation results dealing with typical bioreactor example, are given to illustrate that the proposed design procedures are very efficient and simple.

How to cite

top

Benali, Hanen. "Global output feedback stabilization for nonlinear fractional order time delay systems." Kybernetika 57.5 (2021): 785-800. <http://eudml.org/doc/297712>.

@article{Benali2021,
abstract = {This paper investigates the problem of global stabilization by state and output-feedback for a family of for nonlinear Riemann-Liouville and Caputo fractional order time delay systems written in triangular form satisfying linear growth conditions. By constructing a appropriate Lyapunov-Krasovskii functional, global asymptotic stability of the closed-loop systems is achieved. Moreover, sufficient conditions for the stability, for the particular class of fractional order time-delay system are obtained. Finally, simulation results dealing with typical bioreactor example, are given to illustrate that the proposed design procedures are very efficient and simple.},
author = {Benali, Hanen},
journal = {Kybernetika},
keywords = {Riemann–Liouville fractional; nonlinear time delay system; observer design; asymptotical stability; Lyapunov functional},
language = {eng},
number = {5},
pages = {785-800},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Global output feedback stabilization for nonlinear fractional order time delay systems},
url = {http://eudml.org/doc/297712},
volume = {57},
year = {2021},
}

TY - JOUR
AU - Benali, Hanen
TI - Global output feedback stabilization for nonlinear fractional order time delay systems
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 5
SP - 785
EP - 800
AB - This paper investigates the problem of global stabilization by state and output-feedback for a family of for nonlinear Riemann-Liouville and Caputo fractional order time delay systems written in triangular form satisfying linear growth conditions. By constructing a appropriate Lyapunov-Krasovskii functional, global asymptotic stability of the closed-loop systems is achieved. Moreover, sufficient conditions for the stability, for the particular class of fractional order time-delay system are obtained. Finally, simulation results dealing with typical bioreactor example, are given to illustrate that the proposed design procedures are very efficient and simple.
LA - eng
KW - Riemann–Liouville fractional; nonlinear time delay system; observer design; asymptotical stability; Lyapunov functional
UR - http://eudml.org/doc/297712
ER -

References

top
  1. Aguila, C. N., Duarte, M. A., Gallegos, J A., , Comm. Nonlinear Sci. Numer. Simul. 19 (2014), 2951-2957. DOI
  2. Agarwal, R., Hristova, S., O'Regan, D., , Diff. Equations Dynam. Systems (2018). DOI
  3. Alzabut, J., Tyagi, S., Abbas, S., , Asian J. Control 22(1) (2020), 143-155. DOI
  4. Baleanu, D., Mustafa, O. G., , Comput. Math. Appl. 59 (2010), 1835-1841. DOI
  5. Baleanu, D., Ranjbarn, A., Sadatir, S. J., Delavari, H., Abdeljawad, T., Gejji, V., Lyapunov-Krasovskii stability theorem for fractional system with delay., Romanian J. Phys. 56 (2011), 5 - 6, 636-643. 
  6. Benabdallah, A., , Kybernetika 51 (2015), 99-111. DOI
  7. Benabdallah, A., Echi, N., , Int. J. Systems Sci. 47 (2016), 3857-3863. DOI
  8. Chen, L., He, Y., Wu, R., Chai, Y., Yin, L., , Int. J. Control Automat. Systems 12 (2014), 697-702. DOI
  9. Sen, M. De la, , Fixed Point Theory Appl. 1 (2011), 867932. DOI
  10. Echi, N., , Asian J. Control 23(2) (2019), 685-696. DOI
  11. Echi, N., Basdouri, I., Benali, H., 10.1017/S0004972718000837, Bull. Australian Math. Soc. 99(1) (2019), 161-173. DOI10.1017/S0004972718000837
  12. Echi, N., Benabdallah, A., , Advances Difference Equations (2017), 271. DOI
  13. Echi, N., Benabdallah, A., , Kybernetika 55 (2019), 6, 1016-1033. DOI
  14. Echi, N., Ghanmi, B., Global rational stabilization of a class of nonlinear time-delay systems., Archives Control Sci. 29(2) (2019), 259-278. 
  15. Engheta, N., , IEEE Trans. Antennas Propagat. 44 (1996), 4, 554-566. DOI
  16. Iswarya, M., Raja, R., Cao, J., Niezabitowski, M., Alzabut, J., Maharajan, C., , Math. Computers Simul.(2021). DOI
  17. Khalil, H. K., Nonlinear Systems. Third edition., Macmillan, New York 2002. 
  18. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Application of Fractional Differential Equations., Elsevier, New York 2006. 
  19. Laskin, N., , Physica A: Statist. Mechanics Appl. 287 (2000), 3-4, 482-492. DOI
  20. Li, Y., Chen, Y. Q., Podlubny, I., , Automatica, 45 (2009), 1965-1969. Zbl1185.93062DOI
  21. Liu, S., Wu, X., Zhou, X., W.Jiang, , Nonlinear Dyn. 86 (2016), 65-71. DOI
  22. Liu, S., Zhou, X., Li, X., Jiang, W., , Appl. Math. Lett. 65 (2017), 32-39. DOI
  23. Lu, J. G., Chen, G. R., , IEEE Trans. Automat. Control 54 (2009), 1294-1299. DOI
  24. I.Podlubny, Fractional Diferential Equations., Academic Press, San Diego 1999. 
  25. Pratap, A., Raja, R., Alzabut, J., Dianavinnarasi, J., Cao, J., Rajchakit, G., , . Neural Proc. Lett. 51 (2020), 1485–1526. DOI:10.1007/s11063-019-10154-1 DOI
  26. Rehman, M., Alzabut, J., Anwar, M. F., , Symmetry 12(9) (2020), 1518. DOI
  27. Sadati, S. J. D., Baleanu, D., Ranjbar, A., Ghaderi, R., Abdeljawad, T., , Abstract Appl. Anal. 7 (2010), 1-7. DOI
  28. Sun, H., Abdelwahad, A., Onaral, B., , IEEE Trans. Automat. Control 1 29 (1984), 5, 441-444. DOI
  29. Yan, X., Song, X., Wang, X., , Int. J. Control Automat. Systems 16 (2018), 1550-1557. DOI
  30. Yan, X. H., Liu, Y. G., , J. Control Theory Appl. 11 (2013), 3, 401-408. DOI
  31. Zhang, X., , Appl. Math. Compt. 197 (2008), 407-411. DOI
  32. Zhang, X., Cheng, Z., , Int. J. Systems Sci. 36 (2005), 8, 461-468. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.