Global output feedback stabilization for nonlinear fractional order time delay systems
Kybernetika (2021)
- Volume: 57, Issue: 5, page 785-800
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBenali, Hanen. "Global output feedback stabilization for nonlinear fractional order time delay systems." Kybernetika 57.5 (2021): 785-800. <http://eudml.org/doc/297712>.
@article{Benali2021,
abstract = {This paper investigates the problem of global stabilization by state and output-feedback for a family of for nonlinear Riemann-Liouville and Caputo fractional order time delay systems written in triangular form satisfying linear growth conditions. By constructing a appropriate Lyapunov-Krasovskii functional, global asymptotic stability of the closed-loop systems is achieved. Moreover, sufficient conditions for the stability, for the particular class of fractional order time-delay system are obtained. Finally, simulation results dealing with typical bioreactor example, are given to illustrate that the proposed design procedures are very efficient and simple.},
author = {Benali, Hanen},
journal = {Kybernetika},
keywords = {Riemann–Liouville fractional; nonlinear time delay system; observer design; asymptotical stability; Lyapunov functional},
language = {eng},
number = {5},
pages = {785-800},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Global output feedback stabilization for nonlinear fractional order time delay systems},
url = {http://eudml.org/doc/297712},
volume = {57},
year = {2021},
}
TY - JOUR
AU - Benali, Hanen
TI - Global output feedback stabilization for nonlinear fractional order time delay systems
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 5
SP - 785
EP - 800
AB - This paper investigates the problem of global stabilization by state and output-feedback for a family of for nonlinear Riemann-Liouville and Caputo fractional order time delay systems written in triangular form satisfying linear growth conditions. By constructing a appropriate Lyapunov-Krasovskii functional, global asymptotic stability of the closed-loop systems is achieved. Moreover, sufficient conditions for the stability, for the particular class of fractional order time-delay system are obtained. Finally, simulation results dealing with typical bioreactor example, are given to illustrate that the proposed design procedures are very efficient and simple.
LA - eng
KW - Riemann–Liouville fractional; nonlinear time delay system; observer design; asymptotical stability; Lyapunov functional
UR - http://eudml.org/doc/297712
ER -
References
top- Aguila, C. N., Duarte, M. A., Gallegos, J A., , Comm. Nonlinear Sci. Numer. Simul. 19 (2014), 2951-2957. DOI
- Agarwal, R., Hristova, S., O'Regan, D., , Diff. Equations Dynam. Systems (2018). DOI
- Alzabut, J., Tyagi, S., Abbas, S., , Asian J. Control 22(1) (2020), 143-155. DOI
- Baleanu, D., Mustafa, O. G., , Comput. Math. Appl. 59 (2010), 1835-1841. DOI
- Baleanu, D., Ranjbarn, A., Sadatir, S. J., Delavari, H., Abdeljawad, T., Gejji, V., Lyapunov-Krasovskii stability theorem for fractional system with delay., Romanian J. Phys. 56 (2011), 5 - 6, 636-643.
- Benabdallah, A., , Kybernetika 51 (2015), 99-111. DOI
- Benabdallah, A., Echi, N., , Int. J. Systems Sci. 47 (2016), 3857-3863. DOI
- Chen, L., He, Y., Wu, R., Chai, Y., Yin, L., , Int. J. Control Automat. Systems 12 (2014), 697-702. DOI
- Sen, M. De la, , Fixed Point Theory Appl. 1 (2011), 867932. DOI
- Echi, N., , Asian J. Control 23(2) (2019), 685-696. DOI
- Echi, N., Basdouri, I., Benali, H., 10.1017/S0004972718000837, Bull. Australian Math. Soc. 99(1) (2019), 161-173. DOI10.1017/S0004972718000837
- Echi, N., Benabdallah, A., , Advances Difference Equations (2017), 271. DOI
- Echi, N., Benabdallah, A., , Kybernetika 55 (2019), 6, 1016-1033. DOI
- Echi, N., Ghanmi, B., Global rational stabilization of a class of nonlinear time-delay systems., Archives Control Sci. 29(2) (2019), 259-278.
- Engheta, N., , IEEE Trans. Antennas Propagat. 44 (1996), 4, 554-566. DOI
- Iswarya, M., Raja, R., Cao, J., Niezabitowski, M., Alzabut, J., Maharajan, C., , Math. Computers Simul.(2021). DOI
- Khalil, H. K., Nonlinear Systems. Third edition., Macmillan, New York 2002.
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Application of Fractional Differential Equations., Elsevier, New York 2006.
- Laskin, N., , Physica A: Statist. Mechanics Appl. 287 (2000), 3-4, 482-492. DOI
- Li, Y., Chen, Y. Q., Podlubny, I., , Automatica, 45 (2009), 1965-1969. Zbl1185.93062DOI
- Liu, S., Wu, X., Zhou, X., W.Jiang, , Nonlinear Dyn. 86 (2016), 65-71. DOI
- Liu, S., Zhou, X., Li, X., Jiang, W., , Appl. Math. Lett. 65 (2017), 32-39. DOI
- Lu, J. G., Chen, G. R., , IEEE Trans. Automat. Control 54 (2009), 1294-1299. DOI
- I.Podlubny, Fractional Diferential Equations., Academic Press, San Diego 1999.
- Pratap, A., Raja, R., Alzabut, J., Dianavinnarasi, J., Cao, J., Rajchakit, G., , . Neural Proc. Lett. 51 (2020), 1485–1526. DOI:10.1007/s11063-019-10154-1 DOI
- Rehman, M., Alzabut, J., Anwar, M. F., , Symmetry 12(9) (2020), 1518. DOI
- Sadati, S. J. D., Baleanu, D., Ranjbar, A., Ghaderi, R., Abdeljawad, T., , Abstract Appl. Anal. 7 (2010), 1-7. DOI
- Sun, H., Abdelwahad, A., Onaral, B., , IEEE Trans. Automat. Control 1 29 (1984), 5, 441-444. DOI
- Yan, X., Song, X., Wang, X., , Int. J. Control Automat. Systems 16 (2018), 1550-1557. DOI
- Yan, X. H., Liu, Y. G., , J. Control Theory Appl. 11 (2013), 3, 401-408. DOI
- Zhang, X., , Appl. Math. Compt. 197 (2008), 407-411. DOI
- Zhang, X., Cheng, Z., , Int. J. Systems Sci. 36 (2005), 8, 461-468. DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.