Bounds for the counting function of the Jordan-Pólya numbers
Jean-Marie De Koninck; Nicolas Doyon; A. Arthur Bonkli Razafindrasoanaivolala; William Verreault
Archivum Mathematicum (2020)
- Volume: 056, Issue: 3, page 141-152
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topDe Koninck, Jean-Marie, et al. "Bounds for the counting function of the Jordan-Pólya numbers." Archivum Mathematicum 056.3 (2020): 141-152. <http://eudml.org/doc/297278>.
@article{DeKoninck2020,
abstract = {A positive integer $n$ is said to be a Jordan-Pólya number if it can be written as a product of factorials. We obtain non-trivial lower and upper bounds for the number of Jordan-Pólya numbers not exceeding a given number $x$.},
author = {De Koninck, Jean-Marie, Doyon, Nicolas, Razafindrasoanaivolala, A. Arthur Bonkli, Verreault, William},
journal = {Archivum Mathematicum},
keywords = {Jordan-Pólya numbers; factorial function; friable numbers},
language = {eng},
number = {3},
pages = {141-152},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Bounds for the counting function of the Jordan-Pólya numbers},
url = {http://eudml.org/doc/297278},
volume = {056},
year = {2020},
}
TY - JOUR
AU - De Koninck, Jean-Marie
AU - Doyon, Nicolas
AU - Razafindrasoanaivolala, A. Arthur Bonkli
AU - Verreault, William
TI - Bounds for the counting function of the Jordan-Pólya numbers
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 3
SP - 141
EP - 152
AB - A positive integer $n$ is said to be a Jordan-Pólya number if it can be written as a product of factorials. We obtain non-trivial lower and upper bounds for the number of Jordan-Pólya numbers not exceeding a given number $x$.
LA - eng
KW - Jordan-Pólya numbers; factorial function; friable numbers
UR - http://eudml.org/doc/297278
ER -
References
top- De Angelis, V., 10.4169/000298909X474918, Amer. Math. Monthly 116 (2009), 839–843. (2009) MR2572092DOI10.4169/000298909X474918
- De Koninck, J.-M., Luca, F., Analytic Number Theory: Exploring the Anatomy of Integers, Graduate Studies in Mathematics, vol. 134, American Mathematical Society, Providence, Rhode Island, 2012. (2012) MR2919246
- Ellison, W., Ellison, F., Prime Numbers, Hermann, Paris, 1985. (1985) MR0814687
- Ennola, V., On numbers with small prime divisors, Ann. Acad. Sci. Fenn. Ser. AI 440 (1969), 16 pp. (1969) MR0244175
- Erdös, P., Graham, R.L., On products of factorials, Bull. Inst. Math. Acad. Sinica 4 (2) (1976), 337–355. (1976) MR0460262
- Feller, W., An introduction to probability theory and its applications, Vol. I, Third edition, John Wiley Sons, Inc., New York-London-Sydney, 1968, xviii+509 pp. (1968) MR0228020
- Granville, A., Smooth numbers: computational number theory and beyond. Algorithmic number theory: lattices, number fields, curves and cryptography, Math. Sci. Res. Inst. Publ. 44 (2008), 267–323, Cambridge Univ. Press, Cambridge. (2008) MR2467549
- Luca, F., 10.1017/S0305004107000308, Math. Proc. Cambridge Philos. Soc. 143 (3) (2007), 533–542. (2007) MR2373957DOI10.1017/S0305004107000308
- Nair, S.G., Shorey, T.N., 10.1016/j.jnt.2015.07.014, J. Number Theory 159 (2016), 307–328. (2016) MR3412724DOI10.1016/j.jnt.2015.07.014
- Rosser, J.B., The -th prime is greater than , Proc. London Math. Soc. (2) 45 (1938), 21–44. (1938) MR1576808
- Rosser, J.B., Schoenfeld, L., 10.1215/ijm/1255631807, Illinois J. Math. 6 (1962), 64–94. (1962) MR0137689DOI10.1215/ijm/1255631807
- Tenenbaum, G., Introduction à la théorie analytique des nombres, Collection Échelles, Belin, 2008. (2008) MR0675777
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.