On the binary system of factors of formal matrix rings

Weining Chen; Guixin Deng; Huadong Su

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 3, page 693-709
  • ISSN: 0011-4642

Abstract

top
We investigate the formal matrix ring over R defined by a certain system of factors. We give a method for constructing formal matrix rings from non-negative integer matrices. We also show that the principal factor matrix of a binary system of factors determine the structure of the system.

How to cite

top

Chen, Weining, Deng, Guixin, and Su, Huadong. "On the binary system of factors of formal matrix rings." Czechoslovak Mathematical Journal 70.3 (2020): 693-709. <http://eudml.org/doc/297289>.

@article{Chen2020,
abstract = {We investigate the formal matrix ring over $R$ defined by a certain system of factors. We give a method for constructing formal matrix rings from non-negative integer matrices. We also show that the principal factor matrix of a binary system of factors determine the structure of the system.},
author = {Chen, Weining, Deng, Guixin, Su, Huadong},
journal = {Czechoslovak Mathematical Journal},
keywords = {formal matrix ring; bimodule; system of factors; Wedderburn-Artin theorem},
language = {eng},
number = {3},
pages = {693-709},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the binary system of factors of formal matrix rings},
url = {http://eudml.org/doc/297289},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Chen, Weining
AU - Deng, Guixin
AU - Su, Huadong
TI - On the binary system of factors of formal matrix rings
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 693
EP - 709
AB - We investigate the formal matrix ring over $R$ defined by a certain system of factors. We give a method for constructing formal matrix rings from non-negative integer matrices. We also show that the principal factor matrix of a binary system of factors determine the structure of the system.
LA - eng
KW - formal matrix ring; bimodule; system of factors; Wedderburn-Artin theorem
UR - http://eudml.org/doc/297289
ER -

References

top
  1. Abyzov, A. N., Tapkin, D. T., 10.1134/S0037446615060014, Sib. Math. J. 56 (2015), 955-967 translated from Sib. Mat. Zh. 56 2015 1199-1214. (2015) Zbl1338.16032MR3492900DOI10.1134/S0037446615060014
  2. Abyzov, A. N., Tapkin, D. T., 10.3103/S1066369X15030019, Russ. Math. 59 (2015), 1-12 translated from Izv. Vyssh. Uchebn. Zaved., Mat. 2015 2015 3-14. (2015) Zbl1321.16018MR3374336DOI10.3103/S1066369X15030019
  3. Auslander, M., Reiten, I., Smalø, S. O., 10.1017/CBO9780511623608, Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). (1995) Zbl0834.16001MR1314422DOI10.1017/CBO9780511623608
  4. Varadarajan, A. Haghany K., 10.1080/00927879908826770, Commun. Algebra 27 (1999), 5507-5525. (1999) Zbl0941.16005MR1713049DOI10.1080/00927879908826770
  5. Varadarajan, A. Haghany K., 10.1016/S0022-4049(98)00129-7, J. Pure Appl. Algebra 147 (2000), 41-58. (2000) Zbl0951.16009MR1744654DOI10.1016/S0022-4049(98)00129-7
  6. Krylov, P. A., 10.1007/s10469-008-9016-y, Algebra Logic 47 (2008), 258-262 translated from Algebra Logika 47 2008 456-463. (2008) Zbl1155.16302MR2484564DOI10.1007/s10469-008-9016-y
  7. Krylov, P. A., 10.1007/s11202-010-0009-4, Sib. Math. J. 51 (2010), 72-77 translated from Sib. Mat. Zh. 51 2010 90-97. (2010) Zbl1214.16004MR2654524DOI10.1007/s11202-010-0009-4
  8. Krylov, P. A., Tuganbaev, A. A., 10.1007/s10958-010-0133-5, J. Math. Sci., New York 171 (2010), 248-295 translated from Fundam. Prikl. Mat. 15 2009 145-211. (2010) Zbl1283.16025MR2745016DOI10.1007/s10958-010-0133-5
  9. Krylov, P. A., Tuganbaev, A. A., 10.1007/s10958-015-2610-3, J. Math. Sci., New York 211 (2015), 341-380 translated from Fundam. Prikl. Mat. 19 2014 65-119. (2015) Zbl1333.15004MR3431871DOI10.1007/s10958-015-2610-3
  10. Lam, T. Y., 10.1007/978-1-4612-0525-8, Graduate Texts in Mathematics 189. Springer, New York (1999). (1999) Zbl0911.16001MR1653294DOI10.1007/978-1-4612-0525-8
  11. Morita, K., Duality for modules and its applications to the theory of rings with minimum conditions, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 6 (1958), 83-142. (1958) Zbl0080.25702MR0096700
  12. Müller, M., 10.1080/00927878708823519, Commun. Algebra 15 (1987), 1991-2015. (1987) Zbl0629.16013MR0909950DOI10.1080/00927878708823519
  13. Nicholson, W. K., Watters, J. F., 10.1080/00927879208824336, Commun. Algebra 20 (1992), 141-153. (1992) Zbl0751.16001MR1145330DOI10.1080/00927879208824336
  14. Tang, G., Li, C., Zhou, Y., 10.1080/00927872.2012.748327, Commun. Algebra 42 (2014), 1668-1681. (2014) Zbl1292.16020MR3169661DOI10.1080/00927872.2012.748327
  15. Tang, G., Zhou, Y., 10.1016/j.laa.2012.06.035, Linear Algebra Appl. 437 (2012), 2546-2559. (2012) Zbl1258.16032MR2964706DOI10.1016/j.laa.2012.06.035
  16. Tang, G., Zhou, Y., 10.1016/j.laa.2013.02.019, Linear Algebra Appl. 438 (2013), 4672-4688. (2013) Zbl1283.16026MR3039217DOI10.1016/j.laa.2013.02.019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.