Displaying similar documents to “On the binary system of factors of formal matrix rings”

On the matrix negative Pell equation

Aleksander Grytczuk, Izabela Kurzydło (2009)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) i = 1 n X i - d i = 1 n Y ² i = - I with d ∈ N for nonsingular X i , Y i M ( Z ) , i=1,...,n.

Nonsingularity, positive definiteness, and positive invertibility under fixed-point data rounding

Jiří Rohn (2007)

Applications of Mathematics

Similarity:

For a real square matrix A and an integer d 0 , let A ( d ) denote the matrix formed from A by rounding off all its coefficients to d decimal places. The main problem handled in this paper is the following: assuming that A ( d ) has some property, under what additional condition(s) can we be sure that the original matrix A possesses the same property? Three properties are investigated: nonsingularity, positive definiteness, and positive invertibility. In all three cases it is shown that there exists...

A unified approach to the Armendariz property of polynomial rings and power series rings

Tsiu-Kwen Lee, Yiqiang Zhou (2008)

Colloquium Mathematicae

Similarity:

A ring R is called Armendariz (resp., Armendariz of power series type) if, whenever ( i 0 a i x i ) ( j 0 b j x j ) = 0 in R[x] (resp., in R[[x]]), then a i b j = 0 for all i and j. This paper deals with a unified generalization of the two concepts (see Definition 2). Some known results on Armendariz rings are extended to this more general situation and new results are obtained as consequences. For instance, it is proved that a ring R is Armendariz of power series type iff the same is true of R[[x]]. For an injective endomorphism...

On feebly nil-clean rings

Marjan Sheibani Abdolyousefi, Neda Pouyan (2024)

Czechoslovak Mathematical Journal

Similarity:

A ring R is feebly nil-clean if for any a R there exist two orthogonal idempotents e , f R and a nilpotent w R such that a = e - f + w . Let R be a 2-primal feebly nil-clean ring. We prove that every matrix ring over R is feebly nil-clean. The result for rings of bounded index is also obtained. These provide many classes of rings over which every matrix is the sum of orthogonal idempotent and nilpotent matrices.

Note on strongly nil clean elements in rings

Aleksandra Kostić, Zoran Z. Petrović, Zoran S. Pucanović, Maja Roslavcev (2019)

Czechoslovak Mathematical Journal

Similarity:

Let R be an associative unital ring and let a R be a strongly nil clean element. We introduce a new idea for examining the properties of these elements. This approach allows us to generalize some results on nil clean and strongly nil clean rings. Also, using this technique many previous proofs can be significantly shortened. Some shorter proofs concerning nil clean elements in rings in general, and in matrix rings in particular, are presented, together with some generalizations of these...

On block triangular matrices with signed Drazin inverse

Changjiang Bu, Wenzhe Wang, Jiang Zhou, Lizhu Sun (2014)

Czechoslovak Mathematical Journal

Similarity:

The sign pattern of a real matrix A , denoted by sgn A , is the ( + , - , 0 ) -matrix obtained from A by replacing each entry by its sign. Let 𝒬 ( A ) denote the set of all real matrices B such that sgn B = sgn A . For a square real matrix A , the Drazin inverse of A is the unique real matrix X such that A k + 1 X = A k , X A X = X and A X = X A , where k is the Drazin index of A . We say that A has signed Drazin inverse if sgn A ˜ d = sgn A d for any A ˜ 𝒬 ( A ) , where A d denotes the Drazin inverse of A . In this paper, we give necessary conditions for some block triangular matrices...

On a theorem of McCoy

Rajendra K. Sharma, Amit B. Singh (2024)

Mathematica Bohemica

Similarity:

We study McCoy’s theorem to the skew Hurwitz series ring ( HR , ω ) for some different classes of rings such as: semiprime rings, APP rings and skew Hurwitz serieswise quasi-Armendariz rings. Moreover, we establish an equivalence relationship between a right zip ring and its skew Hurwitz series ring in case when a ring R satisfies McCoy’s theorem of skew Hurwitz series.

Rings with divisibility on descending chains of ideals

Oussama Aymane Es Safi, Najib Mahdou, Ünsal Tekir (2024)

Czechoslovak Mathematical Journal

Similarity:

This paper deals with the rings which satisfy D C C d condition. This notion has been introduced recently by R. Dastanpour and A. Ghorbani (2017) as a generalization of Artnian rings. It is of interest to investigate more deeply this class of rings. This study focuses on commutative case. In this vein, we present this work in which we examine the transfer of these rings to the trivial, amalgamation and polynomial ring extensions. We also investigate the relationship between this class of rings...