The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Oscillation of deviating differential equations”

Nonrectifiable oscillatory solutions of second order linear differential equations

Takanao Kanemitsu, Satoshi Tanaka (2017)

Archivum Mathematicum

Similarity:

The second order linear differential equation ( p ( x ) y ' ) ' + q ( x ) y = 0 , x ( 0 , x 0 ] is considered, where p , q C 1 ( 0 , x 0 ] , p ( x ) > 0 , q ( x ) > 0 for x ( 0 , x 0 ] . Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near x = 0 without the Hartman–Wintner condition.

Oscillation criteria for fourth order half-linear differential equations

Jaroslav Jaroš, Kusano Takaŝi, Tomoyuki Tanigawa (2020)

Archivum Mathematicum

Similarity:

Criteria for oscillatory behavior of solutions of fourth order half-linear differential equations of the form ( | y ' ' | α sgn y ' ' ) ' ' + q ( t ) | y | α sgn y = 0 , t a > 0 , A where α > 0 is a constant and q ( t ) is positive continuous function on [ a , ) , are given in terms of an increasing continuously differentiable function ω ( t ) from [ a , ) to ( 0 , ) which satisfies a 1 / ( t ω ( t ) ) d t < .

Oscillation criteria for two dimensional linear neutral delay difference systems

Arun Kumar Tripathy (2023)

Mathematica Bohemica

Similarity:

In this work, necessary and sufficient conditions for the oscillation of solutions of 2-dimensional linear neutral delay difference systems of the form Δ x ( n ) + p ( n ) x ( n - m ) y ( n ) + p ( n ) y ( n - m ) = a ( n ) b ( n ) c ( n ) d ( n ) x ( n - α ) y ( n - β ) are established, where m > 0 , α 0 , β 0 are integers and a ( n ) , b ( n ) , c ( n ) , d ( n ) , p ( n ) are sequences of real numbers.

On asymptotic behavior of solutions to Emden-Fowler type higher-order differential equations

Irina Astashova (2015)

Mathematica Bohemica

Similarity:

For the equation y ( n ) + | y | k sgn y = 0 , k > 1 , n = 3 , 4 , existence of oscillatory solutions y = ( x * - x ) - α h ( log ( x * - x ) ) , α = n k - 1 , x < x * , is proved, where x * is an arbitrary point and h is a periodic non-constant function on . The result on existence of such solutions with a positive periodic non-constant function h on is formulated for the equation y ( n ) = | y | k sgn y , k > 1 , n = 12 , 13 , 14 .

Solutions of an advance-delay differential equation and their asymptotic behaviour

Gabriela Vážanová (2023)

Archivum Mathematicum

Similarity:

The paper considers a scalar differential equation of an advance-delay type y ˙ ( t ) = - a 0 + a 1 t y ( t - τ ) + b 0 + b 1 t y ( t + σ ) , where constants a 0 , b 0 , τ and σ are positive, and a 1 and b 1 are arbitrary. The behavior of its solutions for t is analyzed provided that the transcendental equation λ = - a 0 e - λ τ + b 0 e λ σ has a positive real root. An exponential-type function approximating the solution is searched for to be used in proving the existence of a semi-global solution. Moreover, the lower and upper estimates are given for such a solution.

Existence and multiplicity of solutions for a p ( x ) -Kirchhoff type problem via variational techniques

A. Mokhtari, Toufik Moussaoui, D. O’Regan (2015)

Archivum Mathematicum

Similarity:

This paper discusses the existence and multiplicity of solutions for a class of p ( x ) -Kirchhoff type problems with Dirichlet boundary data of the following form - a + b Ω 1 p ( x ) | u | p ( x ) d x div ( | u | p ( x ) - 2 u ) = f ( x , u ) , i n Ω u = 0 o n Ω , where Ω is a smooth open subset of N and p C ( Ω ¯ ) with N < p - = inf x Ω p ( x ) p + = sup x Ω p ( x ) < + , a , b are positive constants and f : Ω ¯ × is a continuous function. The proof is based on critical point theory and variable exponent Sobolev space theory.

A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations

Manabu Naito (2024)

Mathematica Bohemica

Similarity:

The half-linear differential equation ( | u ' | α sgn u ' ) ' = α ( λ α + 1 + b ( t ) ) | u | α sgn u , t t 0 , is considered, where α and λ are positive constants and b ( t ) is a real-valued continuous function on [ t 0 , ) . It is proved that, under a mild integral smallness condition of b ( t ) which is weaker than the absolutely integrable condition of b ( t ) , the above equation has a nonoscillatory solution u 0 ( t ) such that u 0 ( t ) e - λ t and u 0 ' ( t ) - λ e - λ t ( t ), and a nonoscillatory solution u 1 ( t ) such that u 1 ( t ) e λ t and u 1 ' ( t ) λ e λ t ( t ).