Displaying similar documents to “Gaussian and Prüfer conditions in bi-amalgamated algebras”

Symmetric and reversible properties of bi-amalgamated rings

Antonysamy Aruldoss, Chelliah Selvaraj (2024)

Czechoslovak Mathematical Journal

Similarity:

Let f : A B and g : A C be two ring homomorphisms and let K and K ' be two ideals of B and C , respectively, such that f - 1 ( K ) = g - 1 ( K ' ) . We investigate unipotent, symmetric and reversible properties of the bi-amalgamation ring A f , g ( K , K ' ) of A with ( B , C ) along ( K , K ' ) with respect to ( f , g ) .

Annihilators of skew derivations with Engel conditions on prime rings

Taylan Pehlivan, Emine Albas (2020)

Czechoslovak Mathematical Journal

Similarity:

Let R be a noncommutative prime ring of characteristic different from 2, with its two-sided Martindale quotient ring Q , C the extended centroid of R and a R . Suppose that δ is a nonzero σ -derivation of R such that a [ δ ( x n ) , x n ] k = 0 for all x R , where σ is an automorphism of R , n and k are fixed positive integers. Then a = 0 .

Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings

Vincenzo de Filippis (2016)

Czechoslovak Mathematical Journal

Similarity:

Let R be a prime ring of characteristic different from 2, Q r its right Martindale quotient ring and C its extended centroid. Suppose that F , G are generalized skew derivations of R with the same associated automorphism α , and p ( x 1 , ... , x n ) is a non-central polynomial over C such that [ F ( x ) , α ( y ) ] = G ( [ x , y ] ) for all x , y { p ( r 1 , ... , r n ) : r 1 , ... , r n R } . Then there exists λ C such that F ( x ) = G ( x ) = λ α ( x ) for all x R .

Semicommutativity of the rings relative to prime radical

Handan Kose, Burcu Ungor (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we introduce a new kind of rings that behave like semicommutative rings, but satisfy yet more known results. This kind of rings is called P -semicommutative. We prove that a ring R is P -semicommutative if and only if R [ x ] is P -semicommutative if and only if R [ x , x - 1 ] is P -semicommutative. Also, if R [ [ x ] ] is P -semicommutative, then R is P -semicommutative. The converse holds provided that P ( R ) is nilpotent and R is power serieswise Armendariz. For each positive integer n , R is P -semicommutative...

Generalized reverse derivations and commutativity of prime rings

Shuliang Huang (2019)

Communications in Mathematics

Similarity:

Let R be a prime ring with center Z ( R ) and I a nonzero right ideal of R . Suppose that R admits a generalized reverse derivation ( F , d ) such that d ( Z ( R ) ) 0 . In the present paper, we shall prove that if one of the following conditions holds: (i) F ( x y ) ± x y Z ( R ) , (ii) F ( [ x , y ] ) ± [ F ( x ) , y ] Z ( R ) , (iii) F ( [ x , y ] ) ± [ F ( x ) , F ( y ) ] Z ( R ) , (iv) F ( x y ) ± F ( x ) F ( y ) Z ( R ) , (v) [ F ( x ) , y ] ± [ x , F ( y ) ] Z ( R ) , (vi) F ( x ) y ± x F ( y ) Z ( R ) for all x , y I , then R is commutative.

On the characterization of certain additive maps in prime * -rings

Mohammad Ashraf, Mohammad Aslam Siddeeque, Abbas Hussain Shikeh (2024)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒜 be a noncommutative prime ring equipped with an involution ‘ * ’, and let 𝒬 m s ( 𝒜 ) be the maximal symmetric ring of quotients of 𝒜 . Consider the additive maps and 𝒯 : 𝒜 𝒬 m s ( 𝒜 ) . We prove the following under some inevitable torsion restrictions. (a) If m and n are fixed positive integers such that ( m + n ) 𝒯 ( a 2 ) = m 𝒯 ( a ) a * + n a 𝒯 ( a ) for all a 𝒜 and ( m + n ) ( a 2 ) = m ( a ) a * + n a 𝒯 ( a ) for all a 𝒜 , then = 0 . (b) If 𝒯 ( a b a ) = a 𝒯 ( b ) a * for all a , b 𝒜 , then 𝒯 = 0 . Furthermore, we characterize Jordan left τ -centralizers in semiprime rings admitting an anti-automorphism τ . As applications, we find the...

Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings

Vincenzo de Filippis (2016)

Czechoslovak Mathematical Journal

Similarity:

Let R be a prime ring of characteristic different from 2 and 3, Q r its right Martindale quotient ring, C its extended centroid, L a non-central Lie ideal of R and n 1 a fixed positive integer. Let α be an automorphism of the ring R . An additive map D : R R is called an α -derivation (or a skew derivation) on R if D ( x y ) = D ( x ) y + α ( x ) D ( y ) for all x , y R . An additive mapping F : R R is called a generalized α -derivation (or a generalized skew derivation) on R if there exists a skew derivation D on R such that F ( x y ) = F ( x ) y + α ( x ) D ( y ) for all x , y R . We prove...

On atomic ideals in some factor rings of C ( X , )

Alireza Olfati (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A nonzero R -module M is atomic if for each two nonzero elements a , b in M , both cyclic submodules R a and R b have nonzero isomorphic submodules. In this article it is shown that for an infinite P -space X , the factor rings C ( X , ) / C F ( X , ) and C c ( X ) / C F ( X ) have no atomic ideals. This fact generalizes a result published in paper by A. Mozaffarikhah, E. Momtahan, A. R. Olfati and S. Safaeeyan (2020), which says that for an infinite set X , the factor ring X / ( X ) has no atomic ideal. Another result is that for each infinite...

A new characterization of symmetric group by NSE

Azam Babai, Zeinab Akhlaghi (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group and ω ( G ) be the set of element orders of G . Let k ω ( G ) and m k ( G ) be the number of elements of order k in G . Let nse ( G ) = { m k ( G ) : k ω ( G ) } . Assume r is a prime number and let G be a group such that nse ( G ) = nse ( S r ) , where S r is the symmetric group of degree r . In this paper we prove that G S r , if r divides the order of G and r 2 does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.