( φ , ϕ ) -derivations on semiprime rings and Banach algebras

Bilal Ahmad Wani

Communications in Mathematics (2021)

  • Volume: 29, Issue: 3, page 371-383
  • ISSN: 1804-1388

Abstract

top
Let be a semiprime ring with unity e and φ , ϕ be automorphisms of . In this paper it is shown that if satisfies 2 𝒟 ( x n ) = 𝒟 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) 𝒟 ( x ) + 𝒟 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒟 ( x n - 1 ) for all x and some fixed integer n 2 , then 𝒟 is an ( φ , ϕ )-derivation. Moreover, this result makes it possible to prove that if admits an additive mappings 𝒟 , 𝒢 : satisfying the relations 2 𝒟 ( x n ) = 𝒟 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) 𝒢 ( x ) + 𝒢 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒢 ( x n - 1 ) , 2 𝒢 ( x n ) = 𝒢 ( x n - 1 ) φ ( x ) + ϕ ( x n - 1 ) 𝒟 ( x ) + 𝒟 ( x ) φ ( x n - 1 ) + ϕ ( x ) 𝒟 ( x n - 1 ) , for all x and some fixed integer n 2 , then 𝒟 and 𝒢 are ( φ , ϕ )derivations under some torsion restriction. Finally, we apply these purely ring theoretic results to semi-simple Banach algebras.

How to cite

top

Wani, Bilal Ahmad. "$(\phi , \varphi )$-derivations on semiprime rings and Banach algebras." Communications in Mathematics 29.3 (2021): 371-383. <http://eudml.org/doc/297499>.

@article{Wani2021,
abstract = {Let $\mathcal \{R\} $ be a semiprime ring with unity $e$ and $\phi $, $\varphi $ be automorphisms of $\mathcal \{R\} $. In this paper it is shown that if $\mathcal \{R\} $ satisfies \[2\mathcal \{D\} (x^n) = \mathcal \{D\} (x^\{n-1\})\phi (x) + \varphi (x^\{n-1\})\mathcal \{D\} (x)+\mathcal \{D\} (x)\phi (x^\{n-1\}) + \varphi (x)\mathcal \{D\} (x^\{n-1\})\] for all $x\in \mathcal \{R\} $ and some fixed integer $n\ge 2$, then $\mathcal \{D\} $ is an ($\phi $, $\varphi $)-derivation. Moreover, this result makes it possible to prove that if $\mathcal \{ R\}$ admits an additive mappings $\mathcal \{D\} ,\mathcal \{G\} \colon \mathcal \{R\} \rightarrow \mathcal \{R\} $ satisfying the relations \begin\{gather*\}\nonumber 2\mathcal \{D\} (x^n) = \mathcal \{D\} (x^\{n-1\})\phi (x) + \varphi (x^\{n-1\})\mathcal \{G\} (x)+\mathcal \{G\} (x)\phi (x^\{n-1\}) + \varphi (x)\mathcal \{G\} (x^\{n-1\})\,, \\ 2\mathcal \{G\} (x^n) = \mathcal \{G\} (x^\{n-1\})\phi (x) + \varphi (x^\{n-1\})\mathcal \{D\} (x)+\mathcal \{D\} (x)\phi (x^\{n-1\}) + \varphi (x)\mathcal \{D\} (x^\{n-1\})\,, \end\{gather*\} for all $x\in \mathcal \{R\} $ and some fixed integer $n\ge 2$, then $\mathcal \{D\} $ and $\mathcal \{G\} $ are ($\phi $, $\varphi $)derivations under some torsion restriction. Finally, we apply these purely ring theoretic results to semi-simple Banach algebras.},
author = {Wani, Bilal Ahmad},
journal = {Communications in Mathematics},
keywords = {Prime ring; semiprime ring; Banach algebra; Jordan derivation; $(\phi , \varphi )$-derivation},
language = {eng},
number = {3},
pages = {371-383},
publisher = {University of Ostrava},
title = {$(\phi , \varphi )$-derivations on semiprime rings and Banach algebras},
url = {http://eudml.org/doc/297499},
volume = {29},
year = {2021},
}

TY - JOUR
AU - Wani, Bilal Ahmad
TI - $(\phi , \varphi )$-derivations on semiprime rings and Banach algebras
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 3
SP - 371
EP - 383
AB - Let $\mathcal {R} $ be a semiprime ring with unity $e$ and $\phi $, $\varphi $ be automorphisms of $\mathcal {R} $. In this paper it is shown that if $\mathcal {R} $ satisfies \[2\mathcal {D} (x^n) = \mathcal {D} (x^{n-1})\phi (x) + \varphi (x^{n-1})\mathcal {D} (x)+\mathcal {D} (x)\phi (x^{n-1}) + \varphi (x)\mathcal {D} (x^{n-1})\] for all $x\in \mathcal {R} $ and some fixed integer $n\ge 2$, then $\mathcal {D} $ is an ($\phi $, $\varphi $)-derivation. Moreover, this result makes it possible to prove that if $\mathcal { R}$ admits an additive mappings $\mathcal {D} ,\mathcal {G} \colon \mathcal {R} \rightarrow \mathcal {R} $ satisfying the relations \begin{gather*}\nonumber 2\mathcal {D} (x^n) = \mathcal {D} (x^{n-1})\phi (x) + \varphi (x^{n-1})\mathcal {G} (x)+\mathcal {G} (x)\phi (x^{n-1}) + \varphi (x)\mathcal {G} (x^{n-1})\,, \\ 2\mathcal {G} (x^n) = \mathcal {G} (x^{n-1})\phi (x) + \varphi (x^{n-1})\mathcal {D} (x)+\mathcal {D} (x)\phi (x^{n-1}) + \varphi (x)\mathcal {D} (x^{n-1})\,, \end{gather*} for all $x\in \mathcal {R} $ and some fixed integer $n\ge 2$, then $\mathcal {D} $ and $\mathcal {G} $ are ($\phi $, $\varphi $)derivations under some torsion restriction. Finally, we apply these purely ring theoretic results to semi-simple Banach algebras.
LA - eng
KW - Prime ring; semiprime ring; Banach algebra; Jordan derivation; $(\phi , \varphi )$-derivation
UR - http://eudml.org/doc/297499
ER -

References

top
  1. Ashraf, M., Rehman, N., Ali, S., On Lie ideals and Jordan generalized derivations of prime rings, Indian Journal of Pure & Applied Mathematics, 34, 2, 2003, 291-294, King Abdulaziz University, (2003) MR1964528
  2. Ashraf, M., Rehman, N., 10.1515/dema-2004-0303, Demonstratio Mathematica, 37, 2, 2004, 275-284, (2004) MR2093532DOI10.1515/dema-2004-0303
  3. Bonsall, F.F., Duncan, J., Complete Normed Algebras, 1973, Springer-Verlag, New York, (1973) Zbl0271.46039
  4. Brešar, M., 10.1090/S0002-9939-1988-0929422-1, Proceedings of the American Mathematical Society, 104, 4, 1988, 1003-1006, (1988) DOI10.1090/S0002-9939-1988-0929422-1
  5. Brešar, M., 10.1016/0021-8693(89)90285-8, Journal of Algebra, 127, 1, 1989, 218-228, Elsevier, (1989) DOI10.1016/0021-8693(89)90285-8
  6. Brešar, M., Vukman, J., 10.1017/S0004972700026927, Bulletin of the Australian Mathematical Society, 37, 3, 1988, 321-322, Cambridge University Press, (1988) DOI10.1017/S0004972700026927
  7. Brešar, M., Vukman, J., Jordan ( θ , φ )-derivations, Glasnik Matematicki, 16, 1991, 13-17, (1991) 
  8. Cusack, J.M., 10.1090/S0002-9939-1975-0399182-5, Proceedings of the American Mathematical Society, 53, 2, 1975, 321-324, (1975) DOI10.1090/S0002-9939-1975-0399182-5
  9. Fošner, A., Vukman, J., 10.1007/s00605-009-0154-7, Monatshefte für Mathematik, 162, 2, 2011, 157-165, Springer, (2011) MR2769884DOI10.1007/s00605-009-0154-7
  10. Herstein, I.N., Jordan derivations of prime rings, Proceedings of the American Mathematical Society, 8, 6, 1957, 1104-1110, JSTOR, (1957) 
  11. Liu, C. K., Shiue, W. K., Generalized Jordan triple ( θ , φ ) -derivations on semiprime rings, Taiwanese Journal of Mathematics, 11, 5, 2007, 1397-1406, The Mathematical Society of the Republic of China, (2007) MR2368657
  12. Rehman, N., Širovnik, N., Bano, T., 10.1007/s00009-016-0823-4, Mediterranean Journal of Mathematics, 14, 1, 2017, 1-10, Springer, (2017) MR3589928DOI10.1007/s00009-016-0823-4
  13. Rehman, N., Bano, T., A result on functional equations in semiprime rings and standard operator algebras, Acta Mathematica Universitatis Comenianae, 85, 1, 2016, 21-28, (2016) MR3456519
  14. Širovnik, N., On certain functional equation in semiprime rings and standard operator algebras, Cubo (Temuco), 16, 1, 2014, 73-80, Universidad de La Frontera. Departamento de Matemática y Estadística., (2014) MR3185789
  15. Širovnik, N., Vukman, J., On certain functional equation in semiprime rings, Algebra Colloquium, 23, 1, 2016, 65-70, World Scientific, (2016) MR3439878
  16. Širovnik, N., On functional equations related to derivations in semiprime rings and standard operator algebras, Glasnik Matematički, 47, 1, 2012, 95-104, Hrvatsko matematičko društvo i PMF-Matematički odjel, Sveučilišta u Zagrebu, (2012) 
  17. Vukman, J., Some remarks on derivations in semiprime rings and standard operator algebras, Glasnik Matematički, 46, 1, 2011, 43-48, Hrvatsko matematičko društvo i PMF-Matematički odjel, Sveučilišta u Zagrebu, (2011) 
  18. Vukman, J., 10.1155/IJMMS.2005.1031, International Journal of Mathematics and Mathematical Sciences, 2005, 7, 2005, 1031-1038, Hindawi, (2005) MR2170502DOI10.1155/IJMMS.2005.1031
  19. Vukman, J., 10.11650/twjm/1500404650, Taiwanese Journal of Mathematics, 11, 1, 2007, 255-265, The Mathematical Society of the Republic of China, (2007) MR2304020DOI10.11650/twjm/1500404650
  20. Vukman, J., Kosi-Ulbl, I., 10.1155/IJMMS.2005.3347, International Journal of Mathematics and Mathematical Sciences, 2005, 20, 2005, 3347-3350, Hindawi, (2005) MR2208058DOI10.1155/IJMMS.2005.3347

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.