The strong persistence property and symbolic strong persistence property

Mehrdad Nasernejad; Kazem Khashyarmanesh; Leslie G. Roberts; Jonathan Toledo

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 1, page 209-237
  • ISSN: 0011-4642

Abstract

top
Let I be an ideal in a commutative Noetherian ring R . Then the ideal I has the strong persistence property if and only if ( I k + 1 : R I ) = I k for all k , and I has the symbolic strong persistence property if and only if ( I ( k + 1 ) : R I ( 1 ) ) = I ( k ) for all k , where I ( k ) denotes the k th symbolic power of I . We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the symbolic strong persistence property.

How to cite

top

Nasernejad, Mehrdad, et al. "The strong persistence property and symbolic strong persistence property." Czechoslovak Mathematical Journal 72.1 (2022): 209-237. <http://eudml.org/doc/297679>.

@article{Nasernejad2022,
abstract = {Let $I$ be an ideal in a commutative Noetherian ring $R$. Then the ideal $I$ has the strong persistence property if and only if $(I^\{k+1\}\colon _R I)=I^k$ for all $k$, and $I$ has the symbolic strong persistence property if and only if $(I^\{(k+1)\}\colon _R I^\{(1)\})=I^\{(k)\}$ for all $k$, where $I^\{(k)\}$ denotes the $k$th symbolic power of $I$. We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the symbolic strong persistence property.},
author = {Nasernejad, Mehrdad, Khashyarmanesh, Kazem, Roberts, Leslie G., Toledo, Jonathan},
journal = {Czechoslovak Mathematical Journal},
keywords = {strong persistence property; associated prime; cover ideal; symbolic strong persistence property},
language = {eng},
number = {1},
pages = {209-237},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The strong persistence property and symbolic strong persistence property},
url = {http://eudml.org/doc/297679},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Nasernejad, Mehrdad
AU - Khashyarmanesh, Kazem
AU - Roberts, Leslie G.
AU - Toledo, Jonathan
TI - The strong persistence property and symbolic strong persistence property
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 209
EP - 237
AB - Let $I$ be an ideal in a commutative Noetherian ring $R$. Then the ideal $I$ has the strong persistence property if and only if $(I^{k+1}\colon _R I)=I^k$ for all $k$, and $I$ has the symbolic strong persistence property if and only if $(I^{(k+1)}\colon _R I^{(1)})=I^{(k)}$ for all $k$, where $I^{(k)}$ denotes the $k$th symbolic power of $I$. We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the symbolic strong persistence property.
LA - eng
KW - strong persistence property; associated prime; cover ideal; symbolic strong persistence property
UR - http://eudml.org/doc/297679
ER -

References

top
  1. Brodmann, M., 10.1090/S0002-9939-1979-0521865-8, Proc. Am. Math. Soc. 74 (1979), 16-18. (1979) Zbl0372.13010MR0521865DOI10.1090/S0002-9939-1979-0521865-8
  2. Cooper, S. M., Embree, R. J. D., Hà, H. T., Hoefel, A. H., 10.1017/S0013091516000110, Proc. Edinb. Math. Soc., II. Ser. 60 (2017), 39-55. (2017) Zbl1376.13010MR3589840DOI10.1017/S0013091516000110
  3. Francisco, C. A., Hà, H. T., Tuyl, A. Van, 10.1016/j.jalgebra.2010.10.025, J. Algebra 331 (2011), 224-242. (2011) Zbl1227.13016MR2774655DOI10.1016/j.jalgebra.2010.10.025
  4. Gitler, I., Reyes, E., Villarreal, R. H., 10.1090/conm/376, Algebraic Structures and Their Representations Contemporary Mathematics 376. American Mathematical Society, Providence (2005), 273-279. (2005) Zbl1096.13004MR2147027DOI10.1090/conm/376
  5. Grayson, D. R., Stillman, M. E., Eisenbund, D., Macaulay2: A software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/. 
  6. Herzog, J., Hibi, T., 10.1007/978-0-85729-106-6, Graduate Texts in Mathematics 260. Springer, London (2011). (2011) Zbl1206.13001MR2724673DOI10.1007/978-0-85729-106-6
  7. Herzog, J., Qureshi, A. A., 10.1016/j.jpaa.2014.05.011, J. Pure Appl. Algebra 219 (2015), 530-542. (2015) Zbl1305.13005MR3279372DOI10.1016/j.jpaa.2014.05.011
  8. Hoa, L. T., Tam, N. D., 10.1007/s00013-010-0112-6, Arch. Math. 94 (2010), 327-337. (2010) Zbl1191.13032MR2643966DOI10.1007/s00013-010-0112-6
  9. Kaiser, T., Stehlík, M., Škrekovski, R., 10.1016/j.jcta.2013.12.005, J. Comb. Theory, Ser. A 123 (2014), 239-251. (2014) Zbl1281.05062MR3157809DOI10.1016/j.jcta.2013.12.005
  10. Khashyarmanesh, K., Nasernejad, M., 10.1080/00927872.2013.793696, Commun. Algebra 42 (2014), 3753-3759. (2014) Zbl1338.13021MR3200056DOI10.1080/00927872.2013.793696
  11. Khashyarmanesh, K., Nasernejad, M., Some results on the associated primes of monomial ideals, Southeast Asian Bull. Math. 39 (2015), 439-451. (2015) MR3410220
  12. Martínez-Bernal, J., Morey, S., Villarreal, R. H., 10.1007/s13348-011-0045-9, Collect. Math. 63 (2012), 361-374. (2012) Zbl1360.13027MR2957976DOI10.1007/s13348-011-0045-9
  13. Matsumura, H., 10.1017/cbo9781139171762, Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). (1986) Zbl0603.13001MR0879273DOI10.1017/cbo9781139171762
  14. Mohammadi, F., Kiani, D., Sequentially Cohen-Macaulay graphs of form θ n 1 , ... , n k , Bull. Iran. Math. Soc. 36 (2010), 109-118. (2010) Zbl1230.05248MR2790917
  15. Nasernejad, M., Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications, J. Algebra Relat. Top. 2 (2014), 15-25. (2014) Zbl1316.13015
  16. Nasernejad, M., 10.1142/S0219498817501055, J. Algebra Appl. 16 (2017), Article ID 1750105, 17 pages. (2017) Zbl1365.13033MR3635135DOI10.1142/S0219498817501055
  17. Nasernejad, M., Khashyarmanesh, K., 10.1080/00927872.2016.1226855, Commun. Algebra 45 (2017), 1853-1864. (2017) Zbl1372.13008MR3582830DOI10.1080/00927872.2016.1226855
  18. Nasernejad, M., Khashyarmanesh, K., Al-Ayyoub, I., 10.1080/00927872.2018.1527920, Commun. Algebra 47 (2019), 1985-1996. (2019) Zbl1441.05107MR3977715DOI10.1080/00927872.2018.1527920
  19. Rajaee, S., Nasernejad, M., Al-Ayyoub, I., 10.1142/S0219498818501025, J. Algebra Appl. 17 (2018), Article ID 1850102, 28 pages. (2018) Zbl1393.13020MR3805713DOI10.1142/S0219498818501025
  20. L. J. Ratliff, Jr., 10.1307/mmj/1029001769, Mich. Math. J. 23 (1976), 337-352. (1976) Zbl0332.13001MR0457421DOI10.1307/mmj/1029001769
  21. Reyes, E., Toledo, J., On the strong persistence property for monomial ideals, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 60 (2017), 293-305. (2017) Zbl1449.13012MR3701891
  22. Villarreal, R. H., 10.1201/b18224, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). (2015) Zbl1325.13004MR3362802DOI10.1201/b18224

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.