The strong persistence property and symbolic strong persistence property
Mehrdad Nasernejad; Kazem Khashyarmanesh; Leslie G. Roberts; Jonathan Toledo
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 1, page 209-237
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNasernejad, Mehrdad, et al. "The strong persistence property and symbolic strong persistence property." Czechoslovak Mathematical Journal 72.1 (2022): 209-237. <http://eudml.org/doc/297679>.
@article{Nasernejad2022,
abstract = {Let $I$ be an ideal in a commutative Noetherian ring $R$. Then the ideal $I$ has the strong persistence property if and only if $(I^\{k+1\}\colon _R I)=I^k$ for all $k$, and $I$ has the symbolic strong persistence property if and only if $(I^\{(k+1)\}\colon _R I^\{(1)\})=I^\{(k)\}$ for all $k$, where $I^\{(k)\}$ denotes the $k$th symbolic power of $I$. We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the symbolic strong persistence property.},
author = {Nasernejad, Mehrdad, Khashyarmanesh, Kazem, Roberts, Leslie G., Toledo, Jonathan},
journal = {Czechoslovak Mathematical Journal},
keywords = {strong persistence property; associated prime; cover ideal; symbolic strong persistence property},
language = {eng},
number = {1},
pages = {209-237},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The strong persistence property and symbolic strong persistence property},
url = {http://eudml.org/doc/297679},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Nasernejad, Mehrdad
AU - Khashyarmanesh, Kazem
AU - Roberts, Leslie G.
AU - Toledo, Jonathan
TI - The strong persistence property and symbolic strong persistence property
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 209
EP - 237
AB - Let $I$ be an ideal in a commutative Noetherian ring $R$. Then the ideal $I$ has the strong persistence property if and only if $(I^{k+1}\colon _R I)=I^k$ for all $k$, and $I$ has the symbolic strong persistence property if and only if $(I^{(k+1)}\colon _R I^{(1)})=I^{(k)}$ for all $k$, where $I^{(k)}$ denotes the $k$th symbolic power of $I$. We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the symbolic strong persistence property.
LA - eng
KW - strong persistence property; associated prime; cover ideal; symbolic strong persistence property
UR - http://eudml.org/doc/297679
ER -
References
top- Brodmann, M., 10.1090/S0002-9939-1979-0521865-8, Proc. Am. Math. Soc. 74 (1979), 16-18. (1979) Zbl0372.13010MR0521865DOI10.1090/S0002-9939-1979-0521865-8
- Cooper, S. M., Embree, R. J. D., Hà, H. T., Hoefel, A. H., 10.1017/S0013091516000110, Proc. Edinb. Math. Soc., II. Ser. 60 (2017), 39-55. (2017) Zbl1376.13010MR3589840DOI10.1017/S0013091516000110
- Francisco, C. A., Hà, H. T., Tuyl, A. Van, 10.1016/j.jalgebra.2010.10.025, J. Algebra 331 (2011), 224-242. (2011) Zbl1227.13016MR2774655DOI10.1016/j.jalgebra.2010.10.025
- Gitler, I., Reyes, E., Villarreal, R. H., 10.1090/conm/376, Algebraic Structures and Their Representations Contemporary Mathematics 376. American Mathematical Society, Providence (2005), 273-279. (2005) Zbl1096.13004MR2147027DOI10.1090/conm/376
- Grayson, D. R., Stillman, M. E., Eisenbund, D., Macaulay2: A software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
- Herzog, J., Hibi, T., 10.1007/978-0-85729-106-6, Graduate Texts in Mathematics 260. Springer, London (2011). (2011) Zbl1206.13001MR2724673DOI10.1007/978-0-85729-106-6
- Herzog, J., Qureshi, A. A., 10.1016/j.jpaa.2014.05.011, J. Pure Appl. Algebra 219 (2015), 530-542. (2015) Zbl1305.13005MR3279372DOI10.1016/j.jpaa.2014.05.011
- Hoa, L. T., Tam, N. D., 10.1007/s00013-010-0112-6, Arch. Math. 94 (2010), 327-337. (2010) Zbl1191.13032MR2643966DOI10.1007/s00013-010-0112-6
- Kaiser, T., Stehlík, M., Škrekovski, R., 10.1016/j.jcta.2013.12.005, J. Comb. Theory, Ser. A 123 (2014), 239-251. (2014) Zbl1281.05062MR3157809DOI10.1016/j.jcta.2013.12.005
- Khashyarmanesh, K., Nasernejad, M., 10.1080/00927872.2013.793696, Commun. Algebra 42 (2014), 3753-3759. (2014) Zbl1338.13021MR3200056DOI10.1080/00927872.2013.793696
- Khashyarmanesh, K., Nasernejad, M., Some results on the associated primes of monomial ideals, Southeast Asian Bull. Math. 39 (2015), 439-451. (2015) MR3410220
- Martínez-Bernal, J., Morey, S., Villarreal, R. H., 10.1007/s13348-011-0045-9, Collect. Math. 63 (2012), 361-374. (2012) Zbl1360.13027MR2957976DOI10.1007/s13348-011-0045-9
- Matsumura, H., 10.1017/cbo9781139171762, Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). (1986) Zbl0603.13001MR0879273DOI10.1017/cbo9781139171762
- Mohammadi, F., Kiani, D., Sequentially Cohen-Macaulay graphs of form , Bull. Iran. Math. Soc. 36 (2010), 109-118. (2010) Zbl1230.05248MR2790917
- Nasernejad, M., Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications, J. Algebra Relat. Top. 2 (2014), 15-25. (2014) Zbl1316.13015
- Nasernejad, M., 10.1142/S0219498817501055, J. Algebra Appl. 16 (2017), Article ID 1750105, 17 pages. (2017) Zbl1365.13033MR3635135DOI10.1142/S0219498817501055
- Nasernejad, M., Khashyarmanesh, K., 10.1080/00927872.2016.1226855, Commun. Algebra 45 (2017), 1853-1864. (2017) Zbl1372.13008MR3582830DOI10.1080/00927872.2016.1226855
- Nasernejad, M., Khashyarmanesh, K., Al-Ayyoub, I., 10.1080/00927872.2018.1527920, Commun. Algebra 47 (2019), 1985-1996. (2019) Zbl1441.05107MR3977715DOI10.1080/00927872.2018.1527920
- Rajaee, S., Nasernejad, M., Al-Ayyoub, I., 10.1142/S0219498818501025, J. Algebra Appl. 17 (2018), Article ID 1850102, 28 pages. (2018) Zbl1393.13020MR3805713DOI10.1142/S0219498818501025
- L. J. Ratliff, Jr., 10.1307/mmj/1029001769, Mich. Math. J. 23 (1976), 337-352. (1976) Zbl0332.13001MR0457421DOI10.1307/mmj/1029001769
- Reyes, E., Toledo, J., On the strong persistence property for monomial ideals, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 60 (2017), 293-305. (2017) Zbl1449.13012MR3701891
- Villarreal, R. H., 10.1201/b18224, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). (2015) Zbl1325.13004MR3362802DOI10.1201/b18224
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.